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Bargaining theory has been centrally important in game theory since the advent of the field 
(Nash, 1950).  In large part, this is due to the range of phenomena bargaining theory applies to.  
In the legislative setting, bargaining is present from the birth to the conclusion of governments.  
Of particular importance in parliamentary systems is the creation of ruling coalitions; in most 
cases, a simple majority is not achieved after an election and parties must bargain over 
membership and the perquisites of belonging to a coalition. 
 
The problem of government formation has also achieved significance as the primary empirical 
test for the main implications of non-cooperative models of bargaining.  It is nearly ideal in 
many respects: election results provide a highly visible signal about the power of the agents 
involved in bargaining (i.e., the number of seats each party achieves in the parliament),1 
government membership is straight-forward and cabinet seats serve as a measure of 
perquisites, and agents are thought of as highly motivated and informed given the large stakes 
involved.  In short, we have an election that determines the power of agents, a bargaining game 
occurs, and the stakes (cabinet seats) are divided between the members of the resultant 
coalition.  On a theoretical level, the extension of Rubinstein bargaining (1982) by Baron and 
Ferejohn (1989) to include multiple players and an infinite horizon suggests a number of 
empirical tests based on this model of government formation.   
 
There is, however, a conceptual problem that threatens to derail the entire endeavor.  As 
Snyder, Ting, and Ansolabehere (2005) and Ansolabehere, Snyder, Strauss, and Ting (2005) 
(hereafter, ASST) point out, it is unresolved how one would apply the Baron-Ferejohn 
framework to the important class of non-homogenous bargaining games.2  Non-homogenous 
games are those in which the minimum winning coalitions (MWC’s) have different strengths; 
for example, the five party case of {4,3,3,2,2} has MWC’s with strengths 8, 9, and 10.  While this 
seems to be a minor technical matter, it has actual significance.  One cannot determine 
equilibrium outcomes without solving this problem.3 
 
Given this problem, ASST’s plan to test Baron-Ferejohn bargaining games is elegant.  The first 
step rests upon a formal proof: ASST attempt to prove that for both homogenous and (crucially) 
non-homogenous games: 
 

“the non-cooperative bargaining model of Baron and Ferejohn (1989) leads naturally to 
the result that expected payoffs are proportional to [minimum integer] voting weights” 
(p. 1, Snyder, Ting, and Ansolabehere, 2005). 

 
For this reason, Snyder, Ting, and Ansolabehere argue that researchers cannot rely on raw 
voting weights and should instead use minimum integer weights (MIW’s) which more 

                                                           
1 By assumption, parties are assumed to be unitary actors. 
2 A non-homogenous game is one in which not all minimum winning coalitions (MWC’s) in a MIW representation 
have the same aggregate weight.   
3 Equilibrium payoffs are referred to as continuation values in the bargaining literature.  Generally, they serve as a 
guide to what we would expect parties to come away with after bargaining. 



accurately reflect the ability of parties to form winning coalitions.4  For example, in the three 
party case where raw weights are {10,10,1}, each party has equal ability to form winning 
coalitions and thus has equal strength in the MIW representation of {1,1,1}. 
 
If their deductive framework is correct and MIW’s are proportional to the equilibrium outcomes 
expected for each party, then the second step is to construct an empirical test relating MIW’s to 
perquisites.  If one can show that MIW’s predict perquisites, then Baron-Ferejohn style 
bargaining has empirical validity.  Accordingly, ASST use data from parliamentary systems 
between 1946 and 2001 and a simple linear model to test for this relationship.   
 
It is important to distinguish between minimum integer and raw seat shares to measure the 
strength of different parties because ASST believe that MIW’s (not raw weights) are 
proportional to equilibrium values: 
 

“Empirical studies of coalition formation that use shares of seats to measure bargaining strength 
suffer from measurement error. The measurement error will be both random and systematic, as 
the correspondence between seats and weights is not one-to-one and not linear. Standard 
regression analyses will therefore produce biased estimates of the bargaining advantage that 
parties gain solely from their votes". Of particular concern, Browne and Franklin (1973), Browne 
and Frendreis (1980), Warwick and Druckman (2001), and others use seat shares as a proxy for 
shares of voting weights to predict the division of cabinet posts. The coefficient on seat shares 
will tend to be biased toward zero as a result of measurement error. Warwick and Druckman 
(2001) also include a dummy variable for the party chosen to serve as formateur. They find that 
the formateur effect is small and not different from zero, but note that measurement error in the 
voting weights might bias the estimated formateur effect” (Ansolabehere, et. al., p. 9-10). 

 
The prior example proves their point.  Imagine three parties with raw weights in the parliament 
of {10,10,1}.  The MIW’s for these same parties are {1,1,1}.  Obviously, choosing to use the 
former as an independent variable to measure “bargaining power” will produce different 
estimates than the latter.  Moreover, ASST assert that only MIW’s are proportional to 
equilibrium outcomes (both certainly cannot be).  While it makes good sense to use MIW’s – 
after all, each party in this example, despite very different raw weights, is equally pivotal in 
forming coalitions – MIW’s are often very difficult to calculate once one gets past simple cases.  
Parties in parliamentary democracies are highly motivated elites, but it is not obvious they can 
intuit the algorithm behind MIW’s, especially as the number of parties grows large.5 
 
ASST illuminate how thorny bargaining becomes when one considers the tandem problems of 
non-homogenous bargaining contexts and whether parties use MIW’s or raw weights.  In actual 

                                                           
4 MIW’s are a vector of bargaining weights for the parties that are the smallest set of integers that generate the 
same set of winning coalitions as do the raw vote shares.   
5 The algorithm is used by most empirical researchers in political science and economics and is due to Aaron 
Strauss (2003), who was awarded a master’s degree in computer science at MIT for the work.  By and large, the 
code returns the correct answer; but, given certain sequences of problems to calculate, it ends up returning errors 
and does not stop doing so until the code is restarted. This means that for most users, the code is accurate most of 
the time, but in the case of doing large numbers of observations (say, for a dataset), there are problems. 



PR systems since 1945, over 1/3 of all elections are non-homogenous.6  And, as even the simple 
example above shows, MIW’s and raw weights are very different creatures and any applied 
statistical model would need to choose which measure of power best captures party behavior. 
 
Finally, it is worth noting that ASST also test the other main implication of Baron-Ferejohn 
bargaining models: the presence of a formateur advantage.  In sequential bargaining games, 
the formateur is the party that is chosen by an exogenous selection mechanism to propose the 
first potential coalition.7 In equilibrium, this confers an advantage to the formateur and one can 
test for this directly if one can ascertain who the formateur is in PR systems.  Thus, ASST have 
identified two key variables – MIW’s and formateur status – and argue that these are sufficient 
to construct a dispositive empirical test. 
 
In many respects, we laud the work by Ansolabehere, Snyder, Strauss, and Ting – formally, they 
attempted to expand the class of phenomena covered by the Baron-Ferejohn model.  
Empirically, they tested two of the main implications of non-cooperative game theory against 
real-world data, following in the tradition of Browne and Franklin (1973), Morelli 1999, 
Fréchette et al. 2005, Warwick and Druckman (2006), and Golder, Golder, and Siegel (2012).   
 
The main issue, which genuinely bedevils all work in this area, is the subset of observations that 
are non-homogenous.  ASST’s work in this area was noteworthy for identifying the problem, but 
unfortunately, their formal work bridging the gap between homogenous and non-homogenous 
games is incorrect (see Laver, de Marchi, and Mutlu, 2011).  What this means is that direct 
empirical tests of non-cooperative bargaining models in the Rubinstein / Baron-Ferejohn 
tradition are impossible. 
 
Substantively, this means we will focus in this paper on a more modest goal: the question of 
how parties assess bargaining power.  Ultimately, it is of great interest what sort of model 
parties use when they bargain, but it is also useful to determine how parties assess power in 
the first place.  Given the important empirical work of Warwick and Druckman which calls into 
question whether parties use MIW’s or raw weights in determining power, it is worthwhile to 
sort out whether they or ASST are correct. 
 
There are also two sets of methodological problems which bedevil the empirical work to date 
which deserve to be clarified.  The first set is specific to ASST’S work and the second to all 
previous empirical work in this area.  Thus, while we share the goal of prior researchers in this 
area – predicting the membership of coalition governments and assessing which parts of non-
cooperative bargaining theory are empirically supported – we must first establish the correct 
principles for building a statistical model to test different notions of bargaining power.  The 
more general problem of testing a specific bargaining model must wait on future work. 

                                                           
6 From ASST’s replication data. 
  
7 This additional power is above and beyond that normally expected for the party given its share of seats in the 
parliament. 



 
Problems with ASST 
 
The first problem is that ASST’s test of the formateur effect is not replicable due to the fact that 
it is impossible to code the variable.  As noted in Laver, de Marchi, and Mutlu (2011),  
 

“the grounding institutional assumption of alternating offers bargaining models is an exogenous 
automaton that first selects a formateur and then reveals this as common knowledge to all 
agents. We rarely observe this revelation in the real world, but empirical analyses of BF-style 
bargaining over government formation fundamentally require coding “formateur status” of each 
political party, observed at the start of the bargaining process. The codings of formateur status 
that underpin STA’s empirical work were supplied by Warwick (Ansolabehere et al., 2005: 556). 
Consulting Warwick and Druckman (2001: 634), we see that formateur status was coded from 
Keesing’s Contemporary Archives. The following entry in Keesing’s describes the formation of a 
German government in 2005. Crucially, this deals with events leading up to, but not including, 
the eventual formation of a government. It is thus a description of legislative bargaining, taken 
from the primary source in this field, but one that does not use the benefit of hindsight about the 
eventual outcome of the process under analysis:  
 
‘After the results were declared, Schröder controversially claimed that he was the victor because the SPD 
remained the largest single party, discounting the fact that the CDU and the CSU formed a single group in 
the Bundestag. Merkel responded that, as the leader of the largest parliamentary group, she had the right 
to head a new government. However, talks between her and the Greens on Sept. 23 on the formation of a 
“Jamaica” majority coalition – named after the black (CDU/CSU), yellow (FDP), and green colors of the 
Jamaican flag – quickly failed. At the same time, the FDP maintained its refusal to enter a “traffic light” 
coalition with the SPD and the Greens. The only viable option for a majority government, therefore, was a 
“grand coalition” of the CDU/CSU and the SPD, although at end-September Merkel and Schröder were both 
still insisting that they should be Chancellor.’ 
 
Who, on this basis, should be coded as exogenously determined common knowledge 
formateur?” (Laver, de Marchi, and Mutlu, p. 5). 

 
More seriously, they also find that the ASST coding for formateur is nearly isomorphic with the 
party that eventually takes the prime ministership.  Obviously, this calls into question whether 
the coding is exogenous or endogenous and it completely ignores the strategic considerations 
in choosing a prime minster (Gasgow, Golder, and Golder, 2011).   
 
Warwick and Druckman (2006) identify a second problem with ASST’s empirical findings: they 
challenge ASST’s use of MIW’s instead of raw seat shares.  They believe that raw seats are 
better predictors of coalition membership and that the formateur effect vanishes once one 
simultaneously tests raw seats.  Obviously, this is a serious criticism given ASST’s strong belief 
that MIW’s better capture the reality of bargaining power.  In addition, Warwick and Druckman 
find that formateur status is correlated with large parties, further undermining ASST’s statistical 
model.   
 
Given the above, our approach here is to drop the formateur variable.  It is difficult to justify its 
use: coding the variable has been poorly done and even when it is included its performance is 
poor.  We do, however, retain MIW’s and discuss this more fully below.  Our core idea is that 
while Baron-Ferejohn models are not supported by current empirical work, it is still of vital 



importance whether parties use accurate assessments of bargaining power (i.e., MIW’s) or rely 
on cognitively less demanding assessments (i.e., raw seat shares). 
 
The third problem is identified by ASST themselves and concerns the uniqueness of MIW’s.  As 
they note, “homogenous games have a unique minimal integer representation”, but non-
homogenous games do not:  
 

A minimum integer representation of a voting game is unique whenever there are five or fewer 
parties because in these situations all minimal winning coalitions share the same total weight 
(which makes the game ‘homogeneous’); in larger games, however, the integer representation 
may not be unique… For some non-homogeneous games, the formulation below will only 
approximate the true relationship (ASST, p. 6). 

 
Warwick and Druckman repeat this warning and given the large proportion of games in real 
world systems that are non-homogenous, we are left with a sense of foreboding.  For obvious 
reasons, we would like our key independent variable to be uniquely measured.  How serious is 
this problem? 
 
The best treatment of the problem is found in Strauss (2003) where he uses the following 
example to illustrate the non-uniqueness and non-monotonicity of MIW’s: 
 

 
(Strauss, p. 31) 
 
The main issue with MIW’s is whether or not equivalent parties should have equal weights and 
to a large degree, stating that they are not unique or monotonic is only because the definition 
of what constitutes a MIW is not settled.  The central idea at stake is “equivalence”, which is 
defined as two parties that are perfect substitutes.  The original vector of raw weights is the 
first row in the forgoing table; the second row is the MIW representation without assuming that 
equivalent parties have equal weights; the third row is the MIW representation assuming 
equivalency.   
 
Following Freixas and Kurz (2011), we replace MIW’s with minimum integer weights preserving 
types; i.e., parties that are perfect substitutes have equal weights.8  As Freixas and Kurz note, 
this problem is especially acute with non-homogenous games and can occur with as few as 
eight parties.  The advantage with using MIW’s preserving types is that with this definition 
weights are unique and monotonic.  The loss is that in some rare cases as Strauss points out 

                                                           
8 We will, however, continue to refer to these weights as MIW’s in what follows.  The Freixax and Kurz definition 
should, in our opinion, be universally adopted. 



above, the resultant vector will be greater than the original vector of raw weights.  To the 
extent that we want to test an accurate measure of bargaining power empirically, this tradeoff 
seems more than worthwhile; in all cases, we would like equivalent parties to be treated as 
such in our measure of bargaining power.   
 
The last problem with ASST’s work is that the algorithm they employ for their MIW calculator is 
flawed.  Most often, it provides the correct solution to a vector of raw party weights; but, 
depending on inputs, the calculator will produce incorrect outputs and continue to do so – this 
is particularly problematic if empirical researchers use the calculator to fill in values for MIW’s 
for an entire dataset.   
 
For the analyses contained here, we have written our own MIW algorithm and have verified 
that the code is correct in all cases (though, see below on the definition we adopt for MIW’s).  
As with any algorithm for calculating MIW’s, we must first produce all minimum winning 
coalitions; we do this recursively: 
 

 
 
Solving for MIW’s is a straight-forward application of linear programming and we use the PuLP 
library to implement our algorithm (http://packages.python.org/PuLP/).9 

                                                           
9 For the best verbal description of the algorithm, see Strauss (2003).  His code is not, however, open-source, 
though the java program can be run from http://www.mindlessphilosopher.net/weights/.  Our version of the 

http://packages.python.org/PuLP/
http://www.mindlessphilosopher.net/weights/


 
Problems Generally with Empirical Tests 
 
In addition to the problems specific to ASST’s work in this area, there are also a set of five 
general problems that apply to all empirical work in this area.  All researchers to date have 
relied on data from European democracies in the post-war period and have used largely the 
same dataset (see below for more details).10   
 
First, the data are not IID, insofar as there are two distinct types of government formation, 
inter-electoral and post-electoral.  Inter-electoral government formations are triggered by a 
failed equilibrium and are not modeled in this literature – cabinet reshuffles and new coalitions 
are not caused by electoral changes in the power of the respective parties. Within the post-
electoral cases there are two distinct types of elections: governments may collapse (e.g., due to 
a vote of no-confidence), or elections may occur because of constitutional provision (e.g., in 
Britain, a new election must be called within five years of the last election).  Datasets used by 
researchers in this area unfortunately mingle all of the above cases, without distinction.  
Minimally, one would want to include indicator variables to separate out the different cases.  
Maximally, one could easily argue that the DGP’s behind these different events are distinct 
enough that one should not lump them all together.  
 
Second, not all observations in the data have equal weight.  Different nations have both 
unequal numbers of parties and unequal frequency of elections; without care, models that 
ignore this problem have much more to do with Italy than they should.  Italy, notably, has a 
large number of political parties as well as frequent elections.  In our data, we have sixteen 
nations, but Italy accounts for over 18% of the total observations.  Italy, Belgium, Denmark, and 
Finland together account for half of all observations. 
 
Third, the dependent variable – the number of cabinet seats – is not normally distributed.   
While we present the results of OLS regressions below, we supplement these with MLE models 
based on a mixed continuous–discrete distribution.  The dependent variable has a limited range 
(since it is a proportion).  To some degree, this suggests the choice of a beta distribution, which 
is flexible enough to suit the problem (see Brehm and Gates, 1993 on this topic).  But, beta 
distributions (because they are continuous) do not assign positive probability to any particular 
value in the range of the dependent variable.  As a cursory inspection of the dependent variable 
in this case reveals, there are a large number of 0’s, which argues for a mixed distribution – in 
taking this approach, we follow the work of Ospina and Ferrari (2012). 
 
Fourth, all of the work in this area hinges on the interpretation of the significance of 
“theoretically relevant” variables.  For example, ASST’s work focused on the p-value attached to 

                                                                                                                                                                                           
algorithm chooses a slightly different set of assumptions than Strauss (see p. 6 of this paper), is not prone to 
mistakes, but is slower for very large numbers of parties. 
10 Warwick and Druckman extend ASST’s dataset by adding subject matter expert assessments of salience of 
portfolios; we have not weighted cabinet seats.    



the formateur variable.  In general, we dislike the overemphasis on p-values especially given the 
reliance on one sample which has been extensively studied.  To the extent that particular 
independent variables are of theoretical interest, a validation strategy should be presented so 
that confidence in a particular variable is warranted. 
 
Last, in the existing datasets, there are a relatively large number of missing or incorrect values.  
We correct these problems in our data.11 
 
Data 
 
The majority of our data comes from the Parliament and Government Composition 
Database (Parlgov). Parlgov was constructed by Holger Döring, Philipp Manow and 
collaborators and contains the election results and government formation data for all EU 
members as well as many OECD countries from 1945 forward (Parlgov 2012).  Our dataset 
includes data from 1945 until the most recent available data on cabinet seats (generally the 
current government) for 16 parliamentary democracies in Western Europe.12  We only include 
cabinets following an election and exclude inter-election observations. 
 
We rely on Parlgov for data on elections, seat share, as well as the party of the prime minister.  
However, Parlgov did not include the number of cabinet seats per party in the governing 
coalition and instead included an indicator variable for coalition members.  In addition we used 
Parlgov’s coding for when governments dissolved and new governments were established.  
 
To complement the Parlgov data set with our dependent variable we collected data on the 
number of cabinet seats per party from an online database.13  Using the parliamentary parties 
from the Parlgov dataset we calculated and added the number of cabinet seats for each 
observation. We then also calculated the share of cabinet seats for each coalition.  
 
As explained above, our main variable of interest is the MIW of each party’s seat share in the 
parliament.  Using the MIW calculator described in the previous section, we created MIW 
weights based on the Parlgov data on parliamentary seat share by party and added this to the 
existing dataset.  
 
Results 
 
We excluded all single party and minority governments from the data set since our theory does 
not apply here.  Thus, our dependent variable, cabinet seat shares, ranges from 0 to less than 1, 
with a point mass at 0.  For our first set of results, we model these data as a mixture between a 
                                                           
11 In ASST’s replication data, for example,  Germany ‘s 1990 election is duplicated, the elections of 1953 and 1957 
are missing, and there are “extra” elections in the 1960’s that are likely only minor cabinet reshuffles.   
12 These countries are: Austria, Australia, Belgium, Denmark, Finland, Germany, Great Britain,  Iceland, Ireland, 
Italy, Luxembourg, Netherlands, Norway, Portugal,  Spain, Sweden.  
13 The data on the number of cabinet seats was collected from 
http://www.kolumbus.fi/taglarsson/dokumentit/governm2.htm.  

http://www.kolumbus.fi/taglarsson/dokumentit/governm2.htm


beta distribution and a degenerate distribution in 0.  Hence, the likelihood function we 
maximize is (Ospina and Ferrari 2012, p. 1611): 
 
𝐿(𝑦; 𝜈, 𝜇,𝜎) =  ∏ 𝜈𝑖

1−𝑦𝑖  (1− 𝜈𝑖)
𝑦𝑖𝑛

𝑖=1 ∏ (1 − 𝜈𝑖)
Γ(𝜎𝑖)
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𝑦𝑖𝜇𝑖𝜎𝑖−1(1−𝑖:𝑦𝑖∈(0,1)
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where: 
 
𝜈𝑖 =  log � 𝛽𝜈0+𝛽𝜈1∙𝑚𝑖𝑤 𝑠ℎ𝑎𝑟𝑒𝑖+𝛽𝜈2 ∙ 𝑠𝑒𝑎𝑡 𝑠ℎ𝑎𝑟𝑒𝑖
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𝜎𝑖 =  log (𝛽𝜎0 + 𝛽𝜎1 ∙ 𝑚𝑖𝑤 𝑠ℎ𝑎𝑟𝑒𝑖 + 𝛽𝜎2 ∙  𝑠𝑒𝑎𝑡 𝑠ℎ𝑎𝑟𝑒𝑖) 
 
Link functions were chosen to constrain parameters to the unit interval (in the case of 𝜈𝑖 and 
𝜇𝑖) and to be strictly positive in the case of the precision parameter 𝜎𝑖.  The parameter 𝜈𝑖 
represents the likelihood of a zero observation, while 𝜇𝑖 is the mean for the beta distribution 
and 𝜎𝑖 is the precision of the beta distribution.  
 
In order to account for the different weights of parties in the estimation due to the differences 
in party system sizes and frequency of elections, we calculated a probability for each party to 
be selected into a subsample of our data.  This selection probability is inversely related to the 
number of parties in parliament. It is calculated as: 
 

𝜋𝑖 =  
1
𝑛𝑘

∙
1
𝐾

 

 
Where 𝑛𝑘  is the number of parties in a given cabinet 𝑘 and 𝐾 is the total number of cabinets in 
the truncated data set.14  Based on the selection probabilities, 80% of the observations (1134 
parties) in the truncated data set are randomly selected in a subsample.  In a next step, the 
subsample is divided into training and test set by randomly selecting 80% of the observations in 
the subsample with a uniform probability. 
 
We then fitted the model described above on the training set for those cabinets where the total 
number of parties with non-zero minimum integer weights is less or equal to 8, and those 
cabinets where there are more than 8 parties with non-zero minimum integer weights.15 For 
the three subsamples, we predicted the cabinet seat shares of the parties in the test set based 
on the model estimates and calculate the root mean squared error. To account for the unequal 
                                                           
14 There are more aggressive strategies we could have used in reweighting the data.  The approach followed here is 
much like using the bootstrap – we are seeing how fragile the results are without making any huge changes to the 
sample.   
15 We chose the threshold of 8 because it was a natural inflection point in the amount of time our algorithm took 
to calculate MIW’s.  For robustness, we also examined models using 7 or 9 and the results were similar (though as 
one exceeds 8 the number of observations in the “high” complexity group falls off sharply).  



selection probabilities, we draw 1000 subsamples from the whole data set, split them into 
training and test sets and fitted the model.  
 
The distribution of estimation results are reported in Table 1 to Table 3 below.  What is obvious 
is that both MIW’s and raw weights affect the number of cabinet seats parties receive as the 
outcome of bargaining.  The two parameters of most interest are 𝜈 (which shows the 
relationship between the independent variables and having no cabinet seats) and 𝜇 (which 
shows the relationship between the independent variables and a strictly positive proportion of 
cabinet seats).  Interestingly, MIW’s are strongly correlated with inclusion in the coalition (i.e., a 
negative relationship with 0 values for the dependent variable) but as 𝜇 shows in Table 1, raw 
weights outperform them when it comes to the number of seats a party receives once it is in 
the coalition. 
 
There is also a strong effect for complexity: if the number of non-zero parties is greater than 
eight, raw weights do a relatively better job predicting outcomes than in the case where there 
are fewer parties.  If one looks at the values for 𝜈 (and to a somewhat lesser degree with 𝜇) 
between Tables 2 and 3, it is obvious that MIW’s do much better in the low complexity 
subsample.  Given the complexity of the algorithm for calculating MIW’s, this is at one level is 
not surprising, but it does represent a novel finding that the use of a model by elite agents is 
still constrained by the complexity of the problem (i.e., as the key parameter of interest -- 
number of parties -- increases). 
 
For comparison to prior results, we also present OLS regressions (despite the fact that they are 
misspecified).  Largely, they are in accord with the zero inflated beta models presented above, 
but a few additional details are worth pointing out.  First, models were trained on eighty 
percent of the data, and it is worth noting that they performed equally well out-of-sample.  The 
MSE in sample was .0275 versus .0277 out-of-sample for the model presented in Table 4;  
additional support for the role played by the two independent variables of interest (i.e., MIW’s 
and raw weights) is provided by the bootstrapped estimates in Table 5.  Second, Table 4 
demonstrates that MIW’s are in fact utilized by parties.  Table 6, interestingly, shows that 
MIW’s are far less predictive of cabinet seat allocations once one constrains the sample to only 
those parties that are in the government.  In qualitative terms, this means that MIW’s predict 
entry to coalitions, especially in the low complexity case of eight or fewer effective parties.  But, 
raw weights are dominant in predicting seat shares once the coalition is established, as 
demonstrated in Table 6.   
 
Discussion 
 
We have demonstrated that MIW’s are in fact important in explaining coalition outcomes in 
parliamentary democracies.  Put another way, political parties have very sophisticated 
assessments of relative bargaining power when they form coalitions, especially when it comes 
to inclusion or exclusion from the ruling coalition.  When it comes to allocating cabinet seats to 
members of the ruling coalition, however, parties rely more heaving upon raw weights for 
reasons that are worth further study.  Finally, we find that the cognitive ability of parties to 



assess bargaining power is not unlimited.  When the complexity of the problem exceeds a 
computational threshold, parties rely upon the more naïve measure of bargaining power. 



Table 1: Distribution of 1000 parameter estimates and root mean squared error for out of sample 
predictions for all cabinets 
 

  
 

Mean Std. Dev.  
 𝜈 Intercept 1.103 0.053  
  MIW -3.392 0.547  
  Raw Weights -2.239 0.424  
 𝜇 Intercept -2.026 0.029  
  MIW 0.668 0.155  
  Raw Weights 5.728 0.201  
 𝜎 Intercept 3.384 0.117  
  MIW -0.456 0.764  
  Raw Weights -2.136 0.918  
  RMSE 0.177 0.005  

 
 
Table 2: Distribution of 1000 parameter estimates and root mean squared error for out-of-sample 
predictions for cabinets with at most 8 parties with non-zero minimum integer weights in parliament 
 

  
 

Mean Std. Dev.  
 𝜈 Intercept 1.066 0.095  
  MIW -5.079 0.764  
  Raw Weights -0.223 0.572  
 𝜇 Intercept -1.827 0.056  
  MIW 1.030 0.468  
  Raw Weights 4.780 0.495  
 𝜎 Intercept 2.538 0.183  
  MIW 3.075 2.676  
  Raw Weights -3.184 2.462  
  RMSE 0.215 0.008  

 
 
Table 3: Distribution of 1000 parameter estimates and root mean squared error for out-of-sample 
predictions for cabinets with more than 8 parties with non-zero minimum integer weights in parliament 
 

  
 

Mean Std. Dev.  
 𝜈 Intercept 1.180 0.065  
  MIW -0.276 0.983  
  Raw Weights -6.319 0.834  
 𝜇 Intercept -2.186 0.025  
  MIW -0.163 0.197  
  Raw Weights 7.041 0.208  
 𝜎 Intercept 3.886 0.080  
  MIW -4.518 0.936  



  Raw Weights 1.542 0.832  
  RMSE 0.140 0.004  

 
 
 

Table 4: OLS regression dropping cabinet shuffles (i.e., no election) Training Set 
 
      Source |       SS       df       MS              Number of obs =    1522 
-------------+------------------------------           F(  4,  1517) =  585.01 
       Model |  64.5252976     4  16.1313244           Prob > F      =  0.0000 
    Residual |  41.8305317  1517   .02757451           R-squared     =  0.6067 
-------------+------------------------------           Adj R-squared =  0.6057 
       Total |  106.355829  1521  .069924937           Root MSE      =  .16606 
 
------------------------------------------------------------------------------ 
cabinet_se~e |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
   miw_share |   .7275281   .0383605    18.97   0.000                 .4894914 
 seats_share |   .0059366   .0004554    13.04   0.000                 .3374586 
       italy |   .0215915   .0147621     1.46   0.144                 .0247732 
   bicameral |   .0041572   .0090364     0.46   0.646                  .007711 
       _cons |  -.0505036   .0078699    -6.42   0.000                        . 
------------------------------------------------------------------------------ 
 
 

Table 5: Bootstrapped results from Table 4 Full Sample 
 
 
Linear regression                               Number of obs      =      1900 
                                                Replications       =      1000 
                                                Wald chi2(4)       =   2370.66 
                                                Prob > chi2        =    0.0000 
                                                R-squared          =    0.6092 
                                                Adj R-squared      =    0.6083 
                                                Root MSE           =    0.1661 
 
------------------------------------------------------------------------------ 
             |   Observed   Bootstrap                         Normal-based 
cabinet_se~e |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   miw_share |   .7168528   .0368828    19.44   0.000     .6445639    .7891418 
 seats_share |   .0058645   .0006005     9.77   0.000     .0046875    .0070416 
       italy |   .0168754   .0108424     1.56   0.120    -.0043754    .0381261 
   bicameral |   .0012766   .0083916     0.15   0.879    -.0151707    .0177239 
       _cons |  -.0475859   .0063527    -7.49   0.000     -.060037   -.0351348 
------------------------------------------------------------------------------ 
 
 

Table 6: OLS Regression excluding non-cabinet members   
 
      Source |       SS       df       MS              Number of obs =     479 
-------------+------------------------------           F(  4,   474) =  435.56 
       Model |  34.3393443     4  8.58483607           Prob > F      =  0.0000 
    Residual |  9.34253354   474  .019709986           R-squared     =  0.7861 
-------------+------------------------------           Adj R-squared =  0.7843 
       Total |  43.6818778   478  .091384682           Root MSE      =  .14039 
 
------------------------------------------------------------------------------ 
cabinet_se~e |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
   miw_share |    .161335   .0452712     3.56   0.000                 .1301712 
 seats_share |   .0141865    .000658    21.56   0.000                 .7858052 
       italy |   .0381817   .0245511     1.56   0.121                 .0349783 
   bicameral |  -.0337654   .0136232    -2.48   0.014                -.0549325 
       _cons |    .065454   .0136862     4.78   0.000                        . 
------------------------------------------------------------------------------ 
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