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Abstract

In both automated and traditional text analysis, human coders are regularly
tasked with categorizing documents. Researchers then evaluate the success of
this crucial step in the research process via one of many measures of intercoder
reliability, such as Cronbachs alpha. They then improve coding practices until
this measure reaches some arbitrary threshold, at which point remaining dis-
agreements are resolved in arbitrary ways and ignored in subsequent analyses.
We show that this common practice can generate severely biased estimates
and misleading conclusions. The problem is the focus on measures of inter-
coder reliability which, except at the extreme, are unrelated to the quantities
of interest, such as the proportion of documents in each category. We thus
develop an approach that enables scholars to directly incorporate coding un-
certainty into statistical estimation. The method offers an interval estimate
which we prove contains the true proportion of documents in each category,
under reasonable assumptions. We then extend this method to situations with
multiple coders, when one coder is trusted more than another, and when the
resulting document codes are used as inputs to another statistical model. We
offer easy-to-use software that implements all our suggestions.

∗Department of Political Science, Stanford University
†Institute for Quantitative Social Science, Harvard University, 1737 Cambridge Street, Cam-

bridge MA 02138; GaryKing.org, king@harvard.edu, (617) 500-7570.
‡Institute for Quantitative Social Science, Harvard University

1



1 Introduction

We attempt to shore up an essential and well known, but relatively undiscussed,
component of the science of automated and traditional text analysis. Researchers in
these areas spend considerable time and resources managing teams that code doc-
uments into a chosen set of categories. Categorization is a fundamental component
of human understanding, but the ambiguous and ever creative nature of human lan-
guage makes the process difficult and perfection impossible (?, ?, ?, Appendix, ?,
p.10). The consequences for the ultimate conclusions drawn depend crucially on the
extent and nature of these difficulties in this formative stage of analysis.

The usual practice involves defining a set of mutually exclusive and exhaustive
categories based on substantive interest and a theoretical perspective; assigning two
or more research assistants to code a small set of documents into these categories;
discovering that levels of intercoder reliability are too low; adjusting, redefining, and
clarifying the categories; and then retraining the research assistants and coding a
new set of documents from scratch. This process is repeated until the level of inter-
coder reliability is deemed satisfactory. Although the level of intercoder reliability
reached often goes unreported in many fields Lombard, Snyder-Duch and Bracken
(2002); Riffe and Freitag (1997), the threshold “satisfactory” level in most fields is
approximately 70–80% (?, pp. 4–5). At that point, the disagreements are ignored.
The remaining documents are coded by a single coder, or by multiple coders who ne-
gotiate their differences informally or their codes are averaged. This practice is com-
mon across fields, including political science (Stewart and Zhukov, 2009; De Vreese
et al., 2006; Druckman and Parkin, 2005; Jamal et al., 2014; Druckman, Kifer and
Parkin, 2010, 2009), medicine (Hripcsak and Heitjan, 2002), education (Béchard
and Grégoire, 2005), journalism (Leccese, 2009), sociology (Williams et al., 2009),
business and marketing (Nazli Nik Ahmad and Sulaiman, 2004; Bortree and Seltzer,
2009), psychology (Zullow et al., 1988), and communication (Van Gorp, 2005).

For traditional hand coding projects, all documents are coded in this way. For
many types of automated text analysis, only documents in the training set are coded
via these procedures. For other types of machine learning analyses, the training set
has high accuracy (due to known information, such as the author of a speech), but
the classifier used to sort the test set into categories produces analogous errors that
are typically as large as hand coding exercises. For any of these, the consequences
for ignoring the remaining errors be devastating for quantities of interest of special
interest to social scientists. In particular, social scientists usually have little interest
in the numeric code for any one social media post or congressional speech (which
they could of course merely read). Instead, the quantity of interest in the social
sciences usually involves the percent of documents in each category, such as treaties
involving strategic misperception or social media posts supporting each presidential
candidate.

Our proposal to ameliorate this problem does not involve changing the best
practices of coders in improving their levels of intercoder reliability. Researchers
should continue the practice of improving their categories and training their coders,
as has been the case (e.g., ?). We also have no objection to the long history of work
on measures of intercoder reliability, such as Cronbach’s α (Cronbach, 1951), Scott’s
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π (Scott, 1955), Cohen’s κ (Byrt, Bishop and Carlin, 1993), Krippendorff’s α (Hayes
and Krippendorff, 2007), and many others. This literature continues to provide more
nuanced, improving ways of summarizing a confusion matrix in a scalar metric for
intercoder reliability. This work should also continue.

The problem then is neither the researcher’s coding practices nor the methodol-
ogist’s measures of intercoder reliability. The problem is the near universal practice
of using these measures to determine a threshold level, above which intercoder reli-
ability may be safely ignored. In fact, as we show, no such level exists. Other than
near perfect agreement, which does not occur with meaningful categories and doc-
uments, no level of intercoder reliability should be ignored. What is missing then,
is a set of tools that enable researchers to incorporate the remaining disagreement
in their analytical methods. We provide those here. Although generic methods of
measurement error have been proposed (?, Appendix; ?, Molinari 2008), the meth-
ods introduced here are tuned for exactly this problem and so are potentially more
powerful or do not require additional assumptions that are unlikely to hold.

2 The Problem with Using Reliability to Assess

Validity

In this section, we derive a mathematically relationship between reliability to valid-
ity. For now, we assume the absence of sampling variability, and use “probability”
and “proportion” interchangably. We begin with notation, which is also summarized
as Appendix .

Consider C coders (c = 1, . . . , C) tasked with coding Di (d = 1, . . . , Di) doc-
uments into K (k = 1, . . . , K) categories. Each document d has a true cate-
gory πd ∈ {1, . . . , K}, and each category k has a true proportion of documents,
π̄k = meand[I(πd = k)], which we collect as a vector π̄ = {π̄i : k = 1, . . . , K} (and
where meanj(aj) =

∑J
j=1 aj/J and J is the number of objects contributing to the

summation). Analogously, each coder c’s decision on document d is ycd ∈ {1, . . . , K}
and the proportion of documents coder c puts in category k is ȳck = meand[I(ycd = k)].
We also collect these results in a vector, ȳc = (ȳc1, ȳ

c
2, . . . , ȳ

c
K). For a raw or naive es-

timate, we average these results over coders, producing ȳk = meanc(ȳ
c
k) with vector

ȳ = (ȳ1, ȳ2, . . . , ȳK).
We now explicitly relate estimates to the truth by explicitly writing the “data

coding generation process”. We begin in scalar notation with the observed propor-
tion in category k as coded by c as a function of all the true proportions:

ȳck =
K∑
j=1

εcjkπ̄j

where εcjk is misclassification probability — the probability that coder c classifies a

document into category k if it is in fact in category j. This means that
∑J

j=1 ε
c
jk = 1

because the coder must make some decision with each document. We define εckk as
coder c’s validity for category k: the proportion of documents the coder correctly
classifies in category k from category k, so that if εckk = 1, then ȳck = π̄k.
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We then move to matrix notation by collecting εcjk misclassification probabilities
into a K×K misclassification matrixEc, with coder c’s validities εckk on the diagonal.
The off diagonal entries measure the probabilities of errors that coder c makes. We
then write the observed proportions for coder c simply as (see Kuha and Skinner,
1997; Mikhaylov, Laver and Benoit, 2012),

ȳc = Ecπ̄ (2.1)

If we observe Ec then, a simple correction reveals the true π,

(Ec)−1 ȳc = π̄ (2.2)

Of course not only is Ec rarely if ever observed, but researchers usually do not
include features designed to estimate or influence it. Thus, instead of focusing on
validity, researchers are often encouraged to focus on the agreement between coders,
which we refer to as reliability. To do this, researchers set up coding tasks so that
at least two coders categorize a subset of documents. The intuition expressed in
the literature is that improving reliability may also improve validity, although the
feeling is not universal (?, p. 130). A key goal of this paper is to formalize these
intuitions and connect these two concepts mathematically.

If two coders, 1 and 2, both code D documents, we define a confusion matrix
element as the probability that coder 1 classifies a document as j and coder 2
classifies a document as k as m12

jk = meand[I(y1
d = j, y2

d = k)]. The category-specific
reliabilities are on the diagonal of this matrix, m12

kk. Finally, as a summary, we define
the overall reliability, the proportion of times coders 1 and 2 apply the same labels
across all categories, as the sum of the diagonal elements of the confusion matrix:

a12 =
K∑
k=1

m12
kk.

Some of the alternative scalar measures of reliability often begin with a12 and adjust
for some concept of base levels of agreement that could be achieved by chance. The
differences among these measures can be important for some purposes, but they do
not materially affect our results.

Regardless of the measure used, researchers are often advised to focus on improv-
ing reliability, which is readily measured. Then, once reliability is improved as much
as feasible given resources and time constraints, coder discrepancy is usually ignored
for subsequent analyses. We show the problem with this approach by demonstrating
that even high (but not perfect) levels of reliability do not satisfactorily constrain
validity.

We begin formally connecting validity and reliability by assuming that each coder
has a constant validity across categories.

Assumption 1. Constant Validity Assumption Coder c’s validity is constant
across categories. This implies that it can be simplified as εc = εckk for all k.

Given Assumption 1 we can show
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Proposition 1. 1) Suppose that K > 2 and coder 1 and coder 2 have overall
reliability a12. Then coder 1’s validity is ε1 ∈ [0, 1] and coder 2’s validity is
ε2 ∈ [0, 1].

2) Suppose K ≥ 2 and Constant validity holds. Then Coder 1 and Coder 2 have
maximum average validity ε̇12 = 1+a12

2
and if the coders have the maximum

average validity ε1 = a12 + 1− ε2.

Proof. Consider first the individual validity intervals for the coder. Fix an agreement
rate between the coders as a12. Suppose the coders agree on the same mistake a12 of
the time and disagree and make distinct errors 1− a12 of the time. Then if K > 2,
ε1 = 0, ε2 = 0. If coder 1 is always correct and coder 2 is correct a12, then ε1 = 1.
If coder 2 is always correct and coder 1 is correct a12 then ε2 = 1.

Now consider the maximum joint validity ė. Note that for all pairs of doc-
uments the coders either agree or they disagree. For the coders to have max-
imum joint validity given the agreement rate then when they agree the coders
must be correct and when they disagree one coder must be correct. Thus a12 =
P (Coder 1 and Coder 2 Correct) and that P (Coder 1 Correct or Coder 2 Correct) =
1. Then, by inclusion/exclusion theorem:

a12 = P (Coder 1 Correct) + P (Coder 2 Correct)− P (Coder 1 Correct or Coder 2 Correct)

= ε1 + ε2 − 1

Algebraic manipulation then shows that the maximum joint validity ė = 1+a12

2
and

that at this maximum ε1 = a12 + 1− ε2.

Proposition 1 shows that without additional behavioral assumptions, even high
coder agreement does not imply that we know that our coders are performing ac-
curately. Even if coders agree perfectly, it may be the case that they always agree
in error. To eliminate this possibility, we need to make an assumption that our
coders are not malicious : able to perfectly misrepresent the answers in our study.
Of course, we are often able to eliminate this assumption with careful selection,
training, and monitoring of our coders. But obtaining a lower bound on the joint
accuracy would still rely heavily on how pessimistic we are about our coders’ joint
validity. In Proposition 3 below show that the coders’ joint validity can range from
zero to the maximum described in Proposition 1. Therefore, an assumption alone
would define the lower bound on the coders’ performance.

Rather than focus on the pessimistic case, we first make the optimistic assump-
tion that our coders are performing as well as possible, given their level of agreement.
Formally, this is equivalent to assuming ė = ε1+ε2

2
is at a maximum, given the joint

agreement. Proposition 1 does show that agreement provides an upper bound on the
joint accuracy of our coders. We show that in the next section that assuming our
coders have the maximum validity given their codes provides much more informa-
tive intervals, though requires more stringent assumptions about coder behavior. We
view this assumption as much less optimistic than the current approach—assuming
no coder error remains for high levels of agreement—but not so unrealistically pes-
simistic as to require an assumption that our coders are intentionally coordinating

5



to undermine our project. We will also see that our framework will provide a natural
sensitive analysis to relax this optimistic assumption to the more pessimistic case
where our coders are performing more poorly.

Proposition 1 leads to our second assumption:

Assumption 2. Wisdom of the Coders. We will suppose that our coders’ av-
erage validity is at a maximum. Equivalently, as we show below, this means if a
plurality of coders of document d agree, they agree on the truth; if there is a tie, then
at least one side identifies the truth.

3 A Method for Incorporating Coder Error

In this section we will develop an algorithm that allows us to propagate the un-
certainty from our coders, using Assumptions 1 and 2. Rather than only a point
estimate, our procedure returns an interval, where the true value will lie if the as-
sumptions are satisfied. We first provide intuition about how to use evaluation
matrices to obtain bounds on the true proportions in each category.

3.1 Intuition about Bounds

To gain intuition about our approach, consider the simplest coding situation. Sup-
pose that a coder is attempting to classify documents into two categories.

We suppose that our single coder is able to perfectly classify documents that
truly belong in category 2, but is only correct ε1 of the time when a document truly
belongs to category 1. We can represent the coder’s decisions with the following
evaluation matrix

E1 =

(
ε1 0

(1− ε1) 1

)
We can then represent the observed proportions,E1π̄ = ȳ1 = (ε1π̄1

1, (1− ε1)π̄1 + π̄2),
where π = (π1, π2) is the true proportion in each category.

If we suppose that ε1 is known, then we can solve for the true values of π̄. They
are

π̄1 =
ȳ1

1

ε1
(3.1)

π̄2 = ȳ1
2 −

1− ε1

ε1
ȳ1

1 (3.2)

Both equations are intuitive. The first notes that the only way our coder would
classify something in category 1 is if it truly belongs to category 1, because she
perfectly handles all documents that correctly belong to category 2. The proportion
in Category 1 will be too small and dividing by ε1 correctly adjusts the proportion.
The second equation adjusts ȳ1

2, removing (1− ε1) of the incorrectly coded propor-

tion of documents that should have been coded in Category 1
ȳ11
ε1

.
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Suppose, now, that we don’t know that the true values of ε1, but rather some
interval in which the values might lie—say ε1 ∈ [a, 1]. Then, we can plug in the values
in Equation 3.1 and 3.2 to determine bounds on the proportion in each category.

In particular, for this interval we find that π1 ∈ [
ȳ11
1
,
ȳ11
a

] and π2 ∈ [ȳ1
2 − 1−a

a
ȳ1

1, ȳ
1
2].

Unlike other measurement error models, note that the observed proportions define
the lower-bound for Category 1 and the upper bound for Category 2.

Throughout the paper we will consider a more general setting, where coders make
errors in both categories, but we will assume each coder has equal validity across
those categories (A1). This results in the following evaluation matrix

E1 =

(
ε1 (1− ε1)

(1− ε1) ε1

)
Using this evaluation matrix and assuming we know ε1 we can solve for π̄1 and

π̄2 to obtain,

π̄1 =
ε1

2ε1 − 1
ȳ1

1 −
1− ε1

2ε1 − 1
ȳ1

2 (3.3)

π̄2 =
ε1

2ε1 − 1
ȳ1

2 −
1− ε1

2ε1 − 1
ȳ1

1 (3.4)

Like the case with errors in only one category, Equations 3.3 and 3.4 are intuitive.
We want to reweight to reflect the errors made when assigning documents that
should have been in a particular category to the other category, while also removing
documents incorrectly placed in the category. And exactly like the simpler case, we
might suppose that our validity lies in some interval ε1 ∈ [a, 1]. Even in this more
general case, the observed proportions are at the extremes of our interval. If ȳ1

1 > ȳ1
2,

then π̄1 ∈ [ȳ1
1,

a
2a−1

ȳ1
1 − 1−a

2a−1
y1

2].

Numerical Example to Obtain Bounds The reasoning thus far has been about
a simple case with one coder. To derive our bounds we will use the information from
double coded data to obtain information about each coders’ validity and to therefore
obtain bounds on the true proportion in each category. For a numerical example,
we will suppose that the true proportion in each category is π̄ = (0.7, 0.3) and that
the coders’ proportions are,

ȳ1 =

(
0.8 0.2
0.2 0.8

)
π̄ = (0.62, 0.38)

ȳ2 =

(
0.9 0.1
0.1 0.9

)
π̄ = (0.66, 0.34)

With naive estimate ȳ = (0.64, 0.36). We will suppose that our coders have agree-
ment rate 0.7.

Our approach to obtaining bounds will be to make assumptions that make use
of information about our coders’ agreement rate and their estimated proportions
to inform the bounds that are used on the proportions. To gain intuition, we will
walk through a set of assumptions that place increasingly specific assumptions on
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the validity and therefore narrow the bounds. We will focus on obtaining bounds
for the first category.

First, we will merely assume that our coders perform better than some baseline
level and not make user of agreement rate. Specifically, we will initially suppose
that our coders perform above some lower level of validity, ε111, ε

1
22 ∈ [0.65, 1] and

ε211, ε
2
22 ∈ [0.65, 1] and make no other assumptions about the errors. By the logic of

Equation 3.1 category 1 will be at a minimum if ε111 = ε211 = 1 and ε122 = ε222 = 0.65.
This occurs because it implies that all the category 2 coding decisions are correct,
while a portion of the category 1 decisions are erorrs. By the same logic the validity
that would maximize category 1 is ε122 = ε222 = 1 and ε111 = ε211 = 0.65. Applying this
logic yields a bound on π̄1 ∈ [0.45, 0.98]. We collect all the bounds in Table 1

Table 1: Bounds For Category 1 Under Different Assumptions

Assumption Point Estimate Minimum Maximum
Truth 0.7 - -
Naive 0.64 - -
Minimum Validity - 0.45 0.98
Constant Validity - 0.64 0.97
Maximum Joint Validity - 0.699 0.76
Maximum Joint Validity, Equality Constraint 0.7 - -

In what follows we will make the more restrictive assumption that our coders’
have constant validity—or that the probability a coder correctly classifies a doc-
ument in each category is constant across categories. We defend the assumption
below, but here we note that using Equation 3.3 for both coders implies that
π̄1 ∈ [0.64, 0.97].

At this point we can begin using our coders’ agreement rate. In particular, we
will suppose that our coders have maximum average validity (A1). This implies that
ε1 ∈ [0.7, 1] and that ε2 = a12 +1−ε1. Note, that this assumption eliminates the first
two bounds, because those bounds require coders to perform either better than the
agreement rate implies is possible or worse than the maximum joint validity. Once
we constrain our search to only those values such that the coders have maximum
joint validity, we obtain a much narrower interval π̄1 ∈ [0.698, 0.76]. Notice, also,
that this interval does not contain the naive estimates.

In the two category case we are able to use one final piece of information to obtain
the correct point estimate for the true proportions, under the assumptions we have
made. (This is a special result that does not hold if K > 2 categories, though
the intuition about the constraint remains useful). Notice that if we have the true
evaluation matrix, E1, then (E1)−1ȳ1 = π̄ and that (E2)−1ȳ2. This implies that
(E1)−1ȳ1 = (E2)−1ȳ2. Including this constraint—for the two category case—yields
the exactly correct evaluation matrices and therefore provides the correct estimate
of the proportion in Category 1, π̄1 = 0.7.

In what follows we use the intuition and assumptions from this section to derive
a more genearl algorithm for estimating bounds on the proportion in categories.
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3.2 Deriving the Intervals

To motivate our method for obtaining intervals, recall that Equation 2.2 shows that
if we know Ec for coder c then we can use the coder’s estimates to back out the
true values π̄. Of course we do not know the true values of Ec, but Proposition 1
provides an upper bound on the coders’ validity—it defines a range for each coder
that depends on the agreement between the pair of coders and the other coder’s
validity. Using this information, and other properties that a solution must have,
we can define a set of pairs of matrices where the coders have maximum average
validity. We then find the minimum and maximum values of π̄k over this set of
matrices.

To derive this interval, we first make the maximum average validity assumption
(A2). (In the next section we generalize our procedure to make less optimistic
assumptions about accuracy). The upper bound from Proposition 1 defines a range
of potential pairs of values for ε1 and ε2: ε2 ∈ [a12, 1] and ε1 = a12 + 1 − ε2. For
intuition note that if ε2 = a12 then ε1 = 1 and if ε2 = 1 then ε1 = a12.

Proposition 1 provides values for the diagonal elements of E1,E2, but provides
no information about the off-diagonal elements, which we will optimize over to obtain
intervals for each category. Before performing this optimization, however, we can
use further constraints to limit the number of matrices we search over. First, as
demonstrated in the previous section, if we know that if we have the true evaluation

matrices, then
(
E1
)−1

ȳ1 =
(
E2
)−1

ȳ2. Second, we know that any solution must
have all entries between zero and one. Therefore, we can restrict our attention to
pairs of matrices Ecȳc ∈ ∆K−1, where ∆K−1 is the K−1 dimensional simplex, for all
coders c. Third, because of the structure of the evaluation matrices, we know that
each column must sum to 1, so the off-diagonal elements for each column must sum
to 1− εc for Ec. We can collect the pairs of matrices that satisfies these constraints
into the setE with typical element (Ẽ1, Ẽ2) ∈ E.

We can then optimize over the set of matrix pairs E to obtain an interval esti-
mator for πk. Note that because we have restricted E to contain matrices such that

(Ẽ1, Ẽ2) ∈ E implies that
(
Ẽ

1
)−1

ȳ1 =
(
Ẽ

2
)−1

ȳ2, we know that

min
(Ẽ1,Ẽ2)∈E

(
Ẽ

1
)−1

ȳ1 +
(
Ẽ

2
)−1

ȳ2

2
= min

(Ẽc)∈E

(
Ẽ
c
)−1

ȳc

for coders c = 1, 2.
We will therefore define our interval estimator for π̄k as π̄k

int

π̄k
int =

[
min
Ẽc∈E

(
Ẽ
c
)−1

ȳc|k,max
Ẽi∈E

(
Ẽ
c
)−1

ȳc|k
]

(3.5)

where |k denotes selecting the kth element from a vector.
Proposition 2 shows that under our assumption of maximum average validity (As-

sumption 2) and constant category validity assumption (Assumption 1), π̄k
int will

contain the true values of π̄k. Further, the bounds are sharp, in the sense that mak-
ing any additional use of the coding decisions—such as the error structure—would

9



require an additional set of assumptions about the proportions in the categories or
further additional assumptions about each coders’ validity.

Proposition 2. Suppose that coder 1 and coder 2 have agreement a12 and that
Assumptions 1 and 2 hold. Then π̄k ∈ π̄kint for each k.

Proof. Assumptions 1 and 2 imply that the true evaluation matrices (E1, E2) ∈ E.
This follows because at the true evaluation matrices the coders will have constant
validity, by Assumption 1, the inverted evaluation matrices will yield the correct
answer and therefore be equal to each other, and the true proportions lie in the
simplex. From Equation 2.2 this implies that (Ec)−1ȳc = π̄ for both coder i = 1, 2.
Thus π̄k ∈ π̄int

k .

To obtain the interval that coder agreement, coders’ decisions, and maximum
joint validity implies we optimize over the pairs of matrices that are possible under
the assumptions to find the minimum and maximum implied values of π̄k. The
matrix inverses in Equation 3.5 make straightforward optimization difficult to obtain
the identification region. Therefore, we use an iterative algorithm to obtain the
interval estimates for π̄int

k . We describe this algorithm to obtain the interval in
Appendix B.

3.3 What If There is No Truth?

Our algorithm is based on the assumption that there is a true proportion of docu-
ments in each category. This assumption will hold in many situations: coding rules
should be written so that there is an unambiguous true proportion in each category.
Yet, some scholars might dispute this assumption is reasonable. Instead they might
argue that the truth depends on the model that coders have in mind. Even in the
absence of an assumption of a gold standard truth our method still provides a useful
and intuitive method for incorporating unceratinty from our hand coders.

To see that our method is still useful even if there is no ground truth, suppose for
now that there is no true proportion of documents in each category. Rather, we will
suppose that each coder has her own interpretation of the coding scheme, leading
to a personal model of how documents should be assigned to categories. Under
this assumption we can recast our algorithm as a method for interpolating across
the coders’ models. First, suppose that we are exclusively interested in coder 1’s
model. Then the evaluation matrix for coder 1 is the identity matrix—by defintion
coder 1 has applied her model to the data. The evaluation matrix for coder 2
will have the agreement, a12 on the diagonal—where they agree coder 2 is applying
coder 1’s model—and then the disagreements have to be reassigned to the remaining
categories. This will be possible if we can find a matrix with a12 down the diagonal
Ea12 such that E−1

a12ȳ2 = ȳ1. Likewise, if we impose coder 2’s model, then the
evaluation matrix for coder 2 is the identity model and coder 1’s model has the
agreement on the diagonal a12.

Now, suppose that we are interested in a mixture between each coder’s model
of how the documents map into the categories. The coders agree a12 of the time,
so they share the same model in those instances. Then, for the remaining (1 - a12)
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we will suppose that we impose coder 1’s model c1 share of the documents and
coder 2’s model c2 = (1 − c1) share of the documents. This implies that coder 1’s
evaluation matrix has a12 + (1 − a12)c1 on the diagonal and coder 2’s evaluation
matrix has a12 + (1 − a12)(1 − c1). Note, that this implies that the average joint

accuracy is a12+(1−a12)c1+a12+(1−a12)(1−c1)
2

= a12+1
2

or the maximum accuracy in the
previous section.

For each c1 we can find evaluation matrices E1
c1

and E2
c1

such that
(
E1
c1

)−1
ȳ1 =(

E2
c1

)−1
ȳ2. For each category k we can then search over c1 to obtain maximum and

minimum values for each category. This, however, yields the equivalent interval as
in Equation 3.5: optimizing over different values of c1 is equivalent to searching over
the set E. Therefore, the interval estimator can also be interpreted as a method for
characterizing the potential proportions, given coder disagreement.

3.4 Extending the Algorithm to Include Non-Overlapping
Coders and To Include Sampling Uncertainty

It is often the case where a pair of coders will double code a subset of data and
the remaining documents are coded by a single coder. We can modify our interval
estimator to accomodate this additional classification data. Suppose that the coders
double code a subset of documents D = D1 ∩D2. Define ȳcD as the proportion for
coder c in each category when applied to set D and define ȳc as the proportion in
each category for all Dc coding decisions—including both double and single coded
documents. Our constraint that the evaluation matrices, when inverted, return the
same proportion can now only be applied to the subset of documents that are coded
by both coders. That is (E1)

−1
ȳ1
D = (E2)

−1
ȳ2
D, but this need not necessarilly

hold in general for ȳc because of differences in the documents included in coder c’s
sample–even if coder 1 and 2’s evaluation matrices are identical.

To include the single-coded documents, we have to introduce an additional as-
sumption: that our coders make the same kind of errors in the double-coded and
the single-coded documents. We will call this the “evaluation matrix stability as-
sumption”.

Assumption 3. Evaluation Matrix Stability Assumption Call coder c’s eval-
uation for the double-coded documents Ec

D and for the single-coded documents Ec
Dc.

We will suppose that Ec
D = Ec

Dc = Ec

Assumption 3 is quite likely to hold in practice, particularly if the double-coded
documents are a random sample from the entire collection of documents. We will
define the set E as in Section 3.2, but only require the constraint to hold over the
double-coded documents. Using these assumptions and optimizing over E, Corollary
1 provides an interval estimator that uses all the coded data.

Corollary 1. Suppose that coder 1 and coder 2 have agreement a12 and Assumptions
1, 2, and 3 hold. Define π̄k

int as

π̄k
int =

[
min

Ẽ1,Ẽ2∈E

(Ẽ1)−1ȳ1 + (Ẽ2)−1ȳ2

2
|k, max

Ẽ1,Ẽ2∈E

(Ẽ1)−1ȳ1 + (Ẽ2)−1ȳ2

2
|k

]

11



Then π̄k ∈ π̄kint

Proof. Under Assumptions 1, 2, and 3 the true evaluation matrices (E1, E2) ∈ E.
And if E1 and E2 are the true evaluation matrices across both double and single-

coded documents, then, π̄k = (E1)−1ȳ1+(E2)−1ȳ2

2
|k

Thus far we have assumed that we have estimates of the population agreement
between coders and proportions. Of course, in any sample our estimates of those
parameters will also be noisy. To capture the uncertainty from that noise we can
perform a simple bootstrapping procedure. Specifically, we perform a vanilla boot-
strap at the double-coded document level and then apply our algorithm. We can
then obtain conservative bounds on the proportions by taking the minimum of the
minimum of each category across the boot strap iterations, and the maximum of the
maximum of each category of the boot strap iterations.

3.5 Simulation Evidence for the Bounding Algorithm

To demonstrate the performance of our algorithm we apply it to simulated data,
generated under a variety of assumptions about how coders are performing. We
then examine the proportion of time our algorithm covers the ground truth of the
simulation and how the width of the intervals we construct depends upon the coders’
agreement rate.

First consider the top-portion of Table 2. For these simulations we generate our
synthetic coding data assuming our coders are performing with maximum joint valid-
ity for a varying number of documents (left-hand column). We then report whether
we used a bootstrap to estimate the key quantities of interest (second column from
left), whether the coders were assumed to have equal validity (or εc = 1+a12

2
) for

c = 1, 2) or with one coder outperforming the other (third column from the left),
and finally the proportion of times the estimated interval contains the true propor-
tions. In each of these simulations, we vary the agreement rate from 0.6 to 0.95.

The top-portion of Table 2 shows that under a wide range of settings our interval
estimator performs well. When there is a small sample, for example, the uncertainty
in estimating the key quantities of interest leads the interval estimator to contain
the truth a small number of times, 60% of the time. This, however, is remedied
with the bootstrap. As the sample size increases the interval estimator contains the
truth almost always. While the Propositions imply that this number should be 1
the interval will sometimes fail to contain the true value because our algorithm is
an approximate inference procedure. We can easily improve the approximation by
searching over a more granular set of values, at the cost of the algorithm taking
longer to complete.

The bottom-portion of Table 2 relaxes the maximum validity assumption, in-
stead supposing that our coders are making independent coding decisions. Note
that the assumption of independence is not necessarily a large departure from our
assumption of maximum validity. For example, suppose that coders agree on 81%
of the documents. If the code independently then we would suppose each coder’s
validity is 90%, while under maximum joint validity each coder would have validity

12



Table 2: Simulation Evidence
No. Coded Bootstrap Simulation Type Proportion Contained

Maximum Validity
100 No Equal 0.60
100 Yes Equal 0.93
500 No Equal 0.93
500 Yes Equal 1
1000 No Equal 0.99
1000 Yes Equal 1
1000 No Differential 0.96
10000 No Equal 0.98
10000 No Differential 0.99
30000 No Equal 1
30000 No Differential 0.99

Independent Coders
100 No Equal 0.90
1000 No Equal 1
10000 No Equal 1
10000 No Differential, Non-Constant 0.65

90.5%.1 Perhaps, then, it is not surprising that our algorithm tends to perform well
when coders are making independent coding decisions.

The bottom two rows of Table 2 relax the assumption that coders have constant
validity across categories. Here, we see that the interval estimator does not perform
as well as the other settings. That said, the estimator does often contain the truth,
and in the next section we introduce a way to perform a sensitivity analysis that
will provide more conservative bounds and therefore improve the coverage of the
algorithm.

One might be concerned that the coverage rates in Table 2 are merely the results
of creating large intervals that are therefore not particularly informative. Figure 1
shows that this is not the case. In it, we plot the width of all intervals from the top-
half of Table 2. The thick-black lines is a local linear regression between the interval
width and the agreement rate among coders (where the variability emerges because
of the random characteristics of the particular simulation). This demonstrates that
for high levels of agreement the intervals are often quite narrow, and yet, still tend
to cover the truth regularly.

3.6 Income Inequality News Coverage

Our first application of the algorithm is to an analysis of income inequality news
coverage over time. The coded statements come from McCall (2013), which seeks to
refute arguments that Americans car little about income inequality. A key compo-
nent of her analysis is assessment of coverage of income inequality coverage in the

1Of course, the difference can be larger, depending on the agreement rate.
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Figure 1: Interval Width Declines as Coders Agree More
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Table 3: Bounds on the Proportion of News Stories about Inequality

Method Irrelevant Inequality Economy/Changes
Coder 1 0.46 0.12 0.41
Coder 2 0.47 0.11 0.42
Bounds, No Bootstrap, Min 0.46 0.07 0.41
Bounds, No Bootstrap, Max 0.49 0.12 0.44
Bounds, Bootstrap, Min 0.37 0.00 0.31
Bounds, Boostrap, Max 0.60 0.19 0.54

news. McCall (2013) employs a team of undergraduate coders to hand code news
stories and we examine three categories the coders used: (1) whether the story was
irrelevant for the analysis, (2) whether the story was about inequality, and (3) an ag-
gregated category capturing whether the story covered stories broadly about changes
in the economy. All together the validation set contained 121 total double-coded
documents and the two coders have an agreement rate of 0.88.

Table 3 shows the average of the coders classifications across the three categories
and provides the bounds both assuming the population variables are correct and
for a bootstrapped values. The first two rows shows that both coders place a very
similar proportion of documents in each category, reflecting the high agreement rate
between the coders. Further, it shows that a relatively small proportion of the
articles—only about 11.5%—are about inequality. The next two rows provide the
bounds on the proportion in each category, treating the estimates of agreement and
from our coders as population parameters. The bounds are fairly narrow, and show
that between 7% and 12% of the articles are about inequality.

The bottom two rows, however, show the result of bootstrapping our algorithm
100 times and then forming the bounds. Including the estimation uncertainty in
our bounding procedure widens the bounds considerably. In spite of the substantial
intercoder agreement, the small number of double coded documents implies that
there is still substantial uncertainty about the distribution of documents across the
categories.

4 Relaxing the Maximum Joint Accuracy Assump-

tion

Our analysis has relied upon the assumption that our coders are performing as
accurately as possible given the level of agreement. Of course this could be a strong
assumption. Coders are likely to make the same error or they may disagree and
both be incorrect. In this section we describe a sensitivity analysis that relaxes the
assumption of maximum average validity, providing a method for examining lower
levels of joint validity.

Proposition 1 shows that the maximum average validity for the coders is 1+a12

2
.

The minimum average validity is always 0 (assuming K > 2 and that we have two
coders). To relax the assumption of maximum joint validity, we can fix a level of
joint validity γ ∈ [0, 1+a12

2
] and then examine the potential validity values at that

15



level of joint validity. Proposition 3 shows that at a wide range of values of γ, the
agreement rate still provides information about the range of values for coder 1 and
2’s validity.

Proposition 3. Suppose ε̇ = γ, coder 1 and coder 2 have agreement rate a12, K >
2, and Assumption 1. Then if γ ∈ [1−a12

2
, 1+a12

2
], ε1 ∈ [γ − 1−a12

2
, γ + 1−a12

2
] and

ε2 = 2γ − ε1. If γ ∈ [0, 1−a12
2

] then ε1 ∈ [0, 2γ] and ε2 = 2γ − ε1.

Proof. Without loss of generality, consider ε1 and fix γ ∈ [1−a12
2
, 1+a12

2
]. Consider

first the upper bound. The upper bound on ε1 occurs if coder 1 is always correct
when the coders disagree, which occurs 1 − a12. If this is true then coder 2 is only
correct when she agrees with coder 1. This implies

ε1 = ε2 + (1− a12)

2γ = ε1 + ε2

where the second equation follows from the definition of γ. Solving for ε1 yields
ε1 = γ + 1−a12

2
. Note that at the maximum ε2 = γ − 1−a12

2
.

While this same argument also provides the lower bound we will now derive it
explicitly. Note that ε1 is small as possible if coder 1 is wrong in all instances she
disagrees with coder 2. This implies that ε2 − (1 − a12) of the time coder 1 agrees
with coder 2 and must be correct. Thus

ε1 = ε2 − (1− a12)

2γ = ε1 + ε2

Solving for ε1 yields ε1 = γ − 1+a12

2
.

If γ ∈ [0, 1−a12
2

), then the agreement rate provides no additional constraint on
the average validity, because the value of γ is sufficiently small that the coders need
not have any overlapping agreement.

Proposition 3 shows that for a wide range of joint validity, the agreement rate pro-
vides information about how much the coders can disagree and therefore specifying a
level of joint validity implies a range for the individual coders’ validity. Proposition
3 provides a useful sensitivity analysis because it generalizes the upper bound in
Proposition 1. To see this, note that the at the maximum joint validity γ = 1+a12

2
.

The maximum value for ε1 is therefore ε1 = γ + 1−a12
2

= 1+a12

2
+ 1−a12

2
= 2

2
= 1. And

the lower bound on ε1 = 1+a12

2
− 1−a12

2
= 2a12

2
= a12.

Figure 4 provides a visualization of how the range of joint validity that is possible
under different levels of agreement. The horizontal axis in each plot is coder 1’s
accuracy, ε1 and the vertical axis in each plot is coder 2’s accuracy, ε2. The grey
area in each plot defines the set of possible values for our coder’s accuracy for all the
potential values of γ. The thick black lines in each plot define iso-joint validity lines
where ε1 + ε2 = 1 + a12 (line closest to the top-right corner) and ε1 + ε2 = 1 − a12

(line closest to the origin). We can represent other iso-joint validity lines with the
equation ε2 = 2γ − ε1.

Consider the plot in the top-left corner, which shows the range values when the
coders disagree. In this case, all values in the lower-half of the unit square are
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Figure 2: Geometric Interpretation of the Maximum Validity Assumption Suggests
a Sensitivity Analysis
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This figure provides a geometric interpretation of the relationship between agreement and
accuracy. Note that as the agreement rate is lowered a wider range of accuracies are considered for
each coder. This implies that examining how the interval increases as the agreement rate decreases
provides a means of assessing the sensitivity of our assumption that our coders are performing as
accurately as possible.
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possible. For all potential values of γ under this agreement rate γ = 1+a12

2
= 0.5,

γ[0, 0.5] the range of validity values for both coder 1 and coder 2 spans from 0 to
1. The top-right plot shows that as agreement increases, we have more information
about the possible joint-validity values. And as the bottom right-plot shows, that
as a12 = 1, then for any value of γ then only e1 = e2 = γ is possible.

We use Proposition 3 and Figure 4 to relax the assumption that our coders are
performing at maximum average validity. Our previous algorithm proceeds selecting
the maximum value of γ = 1+a12

2
. Setting lower values of γ then relaxes our optimistic

assumption, allowing our coders to agree and be incorrect and for instances where
they disagree and one coder is not correct. For any level of γ we can obtain a
set of potential evaluation matrices with the appropriate joint accuracy, (E1

γ , E
2
γ).

Imposing the constraints, that
(
E1
γ

)−1
ȳ1 =

(
E2
γ

)−1
ȳ2 and that

(
Ec
γ

)−1
ȳc ∈ ∆K−1

for all c. Collect the pairs of matrices that satisfy the constraints for a given level
of γ in the set Eγ. For a given γ, the interval estimator is then:

π̄k
γ =

[
min
Ẽc∈Eγ

(
Ẽc
)−1

ȳc, max
Ẽc∈Eγ

(
Ẽc
)−1

ȳc
]

(4.1)

where the difference between Equation 3.5 and Equation 4.1 the set of matrices
considered at different values of γ. If we suppose that the coders average validity
ε̇ ∈ [γlow, γhigh], then we consider a range of potential γ values. We call this our
γ̃-level average validity assumption,

Assumption 4. γ̃-level average validity Coders have average validity ε̇ ∈ [γlow, γhigh]

where γhigh ≤ 1+a12

2
and γlow ≥ 0.

We can encode this broader set of joint validities by optimizing over this interval
of gammas, πγ̃k ,

πγ̃k =

[
min
γ∈γ̃

πγk ,max
γ∈γ̃

πγk

]
Proposition ?? shows that πγ̃k will contain the true proportions.

Proposition 4. Suppose Assumption 1 and 4 hold. Then π̄k ∈ πγ̃k .

Proof. Assumptions 1 and 4 imply that the true evaluation matrices (E1,E2) ∈ Eγ̃
and therefore π̄k ∈ πγ̃k .

4.1 Examining the Proportion of Stories About Income In-
equality

In Section 3.6 we reanalyze double-coded from McCall (2013) and find that sam-
pling variability can result in wide intervals from our method, even when there is a
relatively high rate of intercoder agreement. In this section we again analyze McCall
(2013) and we show that even if we assume there is no sampling variability, but relax
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the assumption of maximum validity, there can still remain considerable uncertainty
about the true proportion of documents in each category.

Figure 3 shows how the intervals we obtain over the same set of documents from
McCall (2013) vary as we consider a wider range of potential levels of joint validity.
At the far right of each plot is the interval assuming maximum joint validity,1+0.88

2
=

0.94 and those intervals replicate the intervals obtain from assuming no sampling
variability in our analysis in Section 3.6.

Figure 3: Relaxing the Assumption of Maximum Joint Validity Yields Wider Inter-
vals
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As we move to the left in Figure 3, we consider intervals under lower levels of
average joint validity. It is immediately clear that interval width increases substan-
tially as we included instances where our coders are more error prone. And at the
far-left of the plot, where we assume the coders are correct 70% of the time average,
we obtain the widest intervals for each category. The interval for the Inequality
category is [0.42, 0.67]; the interval for the inequality category is [0.0, 0.16]; and the
for economy changing category we obtain [0.3, 0.57]. Again, even in a setting where
there is a relatively high amount of intercoder reliability, we have certainty about
the estimates only if we are willing to assume our coders are performing close to the
maximum average joint validity.
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5 Uncertainty When One Coder is Trusted More

and Incorporating Uncertainty From Hand Codes

When Evaluating Machine Learning Methods

Hand coding is increasingly used as an input for automatic classification algorithms
and as a means to evaluate the performance of those methods. The prevailing stan-
dard for assessing the performance is to compare the performance of the classification
algorithm to a gold standard. The most common gold standard are a set of hand
coded documents from the coders. In any instance with a true gold standard—a set
of classifications that are made without error—then we have all the information we
would need to estimate E and to assess our model’s performance.

Gold standards are also the prevailing method to assess how well teams of hand
coders are performing. Researchers will hand code a subset of documents themselves
and compare their coding decision to the decisions’ of hired coders. The assumption
is that a researcher on the project is able to produce infallible classifications of the
coding scheme.

A true gold standard, however, is rarely available. Even when professors and
advanced graduate students are coding documents, they are likely to make errors.
A common reply is that the professor’s coding decision becomes the de facto correct
answer. Or, groups of coders may come together and determine a true label after
deliberation. Both procedures, however, render the classification both unreplicable
and obscures the true meaning of the categories. For the codes to be replicated in
the future and to be derived from the stated rules, they should not exist merely in
one person’s head or as the result of deliberation as a group. They must be clearly
stated as a set of rules that other scholars could use.

Further, recognizing that all coders makes errors implies that there is no true
gold standard. The literature describes this error as alloying the gold standard
(Wacholder, Armstrong and Hartge, 1993)—with the notion that there are errors
alloyed with the true correct answers. The presence of the error implies that the
computed evaluation matrix E no longer is correct and the adjustments that result
will provide inaccurate measures of the true underlying proportions (Wacholder,
Armstrong and Hartge, 1993).

An alloyed gold standard, however, can still be useful for assessing a model’s
performance. Our algorithm in the previous section and Proposition 2 assumes that
we have no specific information about the coders’ accuracies, so either could perform
better. An alloyed gold standard, however, implies that one coder is more accurate
than the other, which narrows the accuracy interval for our coders.

Specifically, suppose that our pair of coders, 1 and 2 have agreement a12. Then
Proposition 1 shows that ε1 + ε2 = 1 + a12. If the coders have equal accuracy then
ε2 = ε1 = 1+a12

2
. We can write then write the difference in the accuracy of the coders

as

ε1 =
1 + a12

2
+ λ

1− a12

2

where λ ∈ [−1, 1]. If λ = 0, then the coders have equal accuracy, if λ = −1
then coder 2 is the gold standard (ε2 = 1), and if λ = 1 then coder 1 is providing
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a true gold standard (ε1 = 1). Therefore λ captures how much more accurate one
coder is relative to the other coder. In the absence of additional information about
how well our coders perform we might restrict the values of λ that we consider for
the intervals. If we make strongers assumptions about λ—narrowing the interval of
values where we think it resides—will yield smaller intervals for our estimates. At the
cost, of course, of a stronger set of assumptions to obtain that narrow identification
region.

Our method for analysis also provides a natural way to incorporate the potential
uncertainty from hand coding when analyzing machine learning methods. While
imperfect intercoder agreement is a universally recognized fact of every hand coding
exercise, evaluation of classification methods often fail to incorporate the uncertainty
this lack of agreement implies when evaluating methods. This might be problematic,
because it can lead to over confidence that one particular method will perform better
in the future, or potentially lead to overconfidence in the future performance of a
method.

We can extend our approach in two ways to provide information about how well
a particular method performs after incorporating coder uncertainty: creating best
and worst case scenario bounds on agreement with a gold standard for a new coder
and by providing a simulation procedure to better understand how a method might
fare if new coders were asked to complete the same task.

5.1 Best and Worst Case Bounds on Method Agreement
After Obtaining a New Coder

Using the assumptions we have made thus far and the agreement between an au-
tomatic classification method and a proposed gold standard provides all the in-
formation necessary to derive best and worst case scenario bounds for a method’s
agreement if a new coder is solicited, provided we are willing to assume the coder
has a particulate agreement rate with the previous gold standard.

In particular, suppose that we have a proposed gold standard ygold, with cor-
responding proportions in each category ȳgold and a machine classification of those
same documents ymachine. We will suppose that the gold standard and the machine
have confusion matrix C where entry mmachine,gold

ij counts the number of times the
machine the object in category i and the gold standard codes the object in category
j. We will define a column normalized version of the matrix C̃ where we require
each column sum to 1.

Given this confusion matrix, we can define best and worst case bounds on the
agreement rate between the machine method and the new “gold standard” we would
obtain from a new coder, provided we fix an agreement rate between our human
coders. Suppose that a12 represents the proportion of the time that we suspect
the human coders will agree. To obtain the maximum new agreement rate, note
that this is obtained if (1) the new human coder agrees with the machine in all
instances where the original coder agreed and (2) the new human coder agrees with
the machine when the original human coder disagreed—subject to the constraint on
the agreement rate between the human coders. For each category, k, the new max
agreement between the machine and human is,
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agold,machine
max,k = min(a12, m̃kk) +

K∑
j 6=k

max

(
min(m̃jk, (1− a12)−

k−1∑
l 6=k

m̃lk), 0

)

The upper bound new agreement is then obtained by weighting the per-category
agreement by the proportion in each category from the original gold standard:
agold,machine

max =
∑K

k=1 a
gold,machine
max,k ȳmachine

k .
The minimum agreement rate between the new gold standard and the machine

coder is obtained if the new coder disagrees as much with machine as possible,
subject to the constraint that the new coder agree as much as required with the
original gold standard—a12. Specifically, for category k the minimum agreement
rate between the new gold standard and the machine is,

agold,machine
min,k = max

(
a12 −

K∑
j 6=k

m̃jk, 0

)

Intuitively, the method says that the minimum will be obtained if as much as
the possible agreement between the human coders occurs in cases where the original
coder and the machine disagreed, subject to the constraint that the human coders
agree at least (a12) of the time.

We can then weight across categories to obtain the new minimum agreement rate
agold,machine

min =
∑K

k=1 a
gold,machine
min,k ȳmachine

j

This procedure can be useful, but often provides extremely wide bounds on
the machine’s performance—even if the coder generates a new gold standard under
agreement rates in relatively high agreement with the original coder. Further, the
bounds rely upon an exceedingly unlikely coding decisions that are new coders might
make. In the next section, we define a simulation based procedure that generates
potential new agreement rates, given rates of agreement among new coders.

5.2 A Simulation Procedure to Encode Coder Error in Gold
Standards

In this section we propose narrower bounds on agreement. Specifically, we introduce
a simulation based procedure that encodes the uncertainty that comes from our
coders. To perform the simulation we simulate confusion matrices between our
original proposed gold standard and hypothetical new gold standards. Then, using
the new synthetic confusion matrix, we generate new gold standard codings and
assess agrement. Repeating the procedure many times over simulates drawing new
hand coders.

Specifically, we first set an agreement rate a12. We generate a new simulated
confusion matrix Csim, which is normalized so each column sums to 1. We set all
diagonal entries msim

jj = a12. For each category, we then draw a realization from a
K − 1 Dirichlet distribution, with parameters zk, gk ∼ Dirichlet(zk). The values of
zk can be set to reflect beliefs about confusion among future coders or set equal to
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a vector of 1’s to reflect a uniform distribution. The off diagonal elements are then
m−k,k = (1− a12)× gk.

For each document d we then draw the new gold standard’s label, ynew gold
d ac-

cording to ynew gold
d ∼ Multinomial(1, cygoldd

), or from a multinomial distribution that

corresponds to the label of the current gold standard. For each iteration of the
simulation we can then obtain a new agreement rate with the machines prediction
anew gold,machine by taking the agreement rate between our simulated gold standard
and the machine’s predictions. Performing this simulation many times provides a
distribution of agreement rates that incorporate one type of uncertainty from hand
coders.

5.3 Incorporating Coder Uncertainty With Deep Learning
Models

Tai, Socher and Manning (2015) reports the highest agreement to date on the Stan-
ford Sentiment Tree Bank, classifying the sentiment of the short phrases. We use
the simulation based algorithm to examine how the methods compare as we in-
troduce the uncertainty from intercoder disagreement of their reported. We focus
on the three best performing methods, based on the reported agreement with the
gold standard, along with RNTN, a previous top performing method (Socher et al.,
2013).2

The left-hand plot in Figure 4 shows the proportion of simulations the top
performing method, Constituency Tree LSTM Tuned, remains the top performing
method as we allow for more disagreement between the gold standards. Indeed, at
very high levels of simulated agreement between the coders—0.8 agreement between
the original and new gold standards—Constituency Tree LSTM with tuned vectors
is only the top performing method 76.8% of the time. At the lowest simulated
level of agreement between the hand coders, Constituency Tree LSTM is the highest
performing method in only 55.8% of the simulations. The right-hand plot shows
the difference in agreement rate between the best performing method, Constituency
Tree LSTM Tuned, and the other methods as agreement rate with the new coder de-
creases. This figure shows that even at reasonable levels of intercoder agreement the
differences shrinks as the coders disagree more often—even though the agreement
rates between the coders are relatively high for hand coding exercises.

6 Uncertainty With More than Two Coders for

Each Document

We have so far focused on developing intervals when we have two coders, because this
is the most common and often most affordable method used to assess the reliability
and validity of document codes. In this section we show how adding additional
coders to code a single document can provide even more informative bounds on
coders’ maximum possible accuracy. This more informative bound arises because our

2In our supplementary appendix we provide the results for all 9 methods.
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Figure 4: Including Uncertainty from Intercoder Agreement in Evaluating Sentiment
Classification Methods
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assumption of the maximum possible joint validity and the addition of coders allows
us to potentially identify instances where some some coders are wrong, allowing us
to bound the maximum accuracy of a coder away from 1.

To examine the case with more than two coders, we first introduce some addi-
tional notation. For simplicity (and without loss of generality) suppose that our
C coders have coded D documents into one-of-K categories. Define the KC set of
potential labels for each document in the set T , with one instance for document d
as yd ∈ T . The C-element long vector yd collects the coding decisions across coders
and ycd describes the coding decision for coder c on document d. We will collect the
coding decisions into an C ×D matrix Y .

To establish our bounds on coder accuracy with multiple coders, we will examine
aggregations of our coder’s decisions. An equivalent view of the coding process is
that we are asking our coders to vote on the label for a particular document, where
we tally the codes from our coders as votes for a document’s label. Formally, we
define the function v : T → CK as a function that performs this aggregation.
For any vector yd we will say that coder c is in the plurality for document d if
ycd = maxk v(yd) and |maxk v(yd)| = 1: coder c is in the plurality when her label for
document d agrees with the most popular label for document d adn there is a single
most-popular label for document d. We will denote the proportion of times that
coder c is in the plurality with pc = meand (I(ycd = maxk v(yd), |maxk v(yd)| = 1).
We will similarly say that coder c is part of a plurality tie if the number of categories
at the maximum is 2 or more, or |maxk v(ym)| > 1 and ycd ∈ maxk v(yd). We
can similarly define the proportion of times that coder c is part of a plurality tie,
tc = meand (I(ycd ∈ maxk v(yd), |maxk v(yd)| > 1).

Before stating our result, we first generalize our assumption of maximum joint
validity for our coders given their agreement. Specifically, we will say assume that
our coders have the maximum average validity given the agreement across coders.
Formally, we will assume that ε̇ = meanc (εc) is as large as possible, given the
coding decisions Y . This is a direct generalization from the case where C = 2 our
Assumption 1, so restate the assumption here:

Assumption 5. Wisdom of the Coders (General) We will suppose that ε̇ =
meanc (εc) is at a maximum, given Y .

Proposition 5 establishes the bound on coder validity with a larger set of coders.

Proposition 5. Suppose that there are C coders who code D documents and As-
sumptions 1 and 5 hold. Then,

εc ∈ [pc, pc + tc]

where pc is the proportion of times c is among the clear plurality of coders and
tc is the proportion of times c is among the pluralities in a plurality tie.

Proof. We first consider the lower bound, given maximum average validity. The
assumption that our coders have the maximum average validity given the level of
agreement implies that in instances where all the coders agree that the coders are
correct. The coders can have two different patterns of disagreement. There can
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either be a clear plurality of voters for a category, or there will be a plurality tie.
Assume first there is a clear plurality of coders. Then our assumption of maximum
joint validity implies that those coders are correct. (If not, then average validity
could be improved by making them correct without affecting the agreement). This
implies that at worst εc = pc. To determine the upper bound suppose that coder c
is in a plurality tie tc of the time. Our assumption of maximum average validity and
the coder’s agreement provides no information about which group in the plurality
tie is correct. Therefore, coder c’s accuracy is highest if each instance she is involved
in a plurality tie she is correct. This implies that maximum value of εc = pc + tc.
Thus εc ∈ [pc, pc + tc].

Proposition 5 shows that with additional coders we can obtain a more informa-
tive upper bound on a coder’s decision. The extra information arises because our
assumption of maximum accuracy given the agreement level among coders implies
that any instance where a plurality of voters agree, they must be correct. This im-
plication is very similar to Wisdom of the Crowds results. Proposition 5 generalizes
the upper bound from Proposition 1. If C = 2, then pc = a12 and tc = (1− a12). If
we assume that coder 1 is always correct when they disagree with coder 2 then the
upper bound on coder 1’s accuracy is ε1 = 1.

While there is more information from coders that could be used to incorporate
information into our algorithm, our empirical case studies have shown us that this
creates an overly restrictive set of assumptions that often implies an empty interval.
Instead, we use the results in Proposition 5 to apply a modified version of our
algorithm to each pair of coders. Suppose that we have a collection of coders C coders
and that each coder c and coder j’s validity lies in the interval from Proposition 5.
For each pair of coders c and j we can define the new pairs of evaluation matrices,

Ẽc, Ẽj ∈ Ecj such that
(
Ẽc
)−1

ȳc ∈ ∆K−1,
(
Ẽj
)−1

∈ ∆K−1 and
(
Ẽc
)−1

ȳc = Ẽ−1
j ȳj,

and the diagonal elements satisfy the interval from Proposition 5 and εc + εj ≤
pc + pj + tc + tj − tcj where tcj is the proportion of the time coder c and coder j are
in the plurality tie together. We can search over all pairs of coders c, j to define our
new interval,3

π̄k
int =

[
min
i,j

min
Ẽi∈Eij

Ẽ−1
i ȳi|k,max

i,j
max
Ẽi∈Eij

Ẽ−1
i ȳi|k

]
(6.1)

6.1 Analyzing the Credit Claiming Statements in House
Press Releases

Grimmer, Westwood and Messing (2014) analyze the rate of credit claiming across
members of the US House. Grimmer, Westwood and Messing (2014) use a collec-
tion of 789 triple-coded press releases as a training set for a supervised learning
procedure. Here, we analyze only the hand coded press releases to better under-
stand the uncertainty from hand coding. We work with a modified version of their

3Equation 6.1 will provide a conservative estimate of coder uncertainty, because it fails to include
all the information from the multiply coded data that might further restrict the range of validity
that we search over.
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Table 4: Reanalyzing the Rate of Credit Claiming in a Sample of US House Press
Releases
Coder Number Advertising Credit Claiming Other
1 0.29 0.21 0.51
2 0.23 0.25 0.51
3 0.32 0.30 0.38

Bounds
Minimum 0.20 0.20 0.51
Maximum 0.26 0.24 0.56

data, analyzing three categories of press releases: advertising, credit claiming for
money, and all other press releases. The first three rows in Table ?? presents the
proportion of press releases in each of the categories from each of the coders. The
relatively close alignment across the categories reflects the high rate of agreement
among the coders. All three coders agreed 68.1% of the press releases; coder 1 and
2, while coder 3 disagreed in 9.3% of the press releases; coder 1 and coder 3 agreed
while coder 2 disagreed in 7.2% of the press releases; coder 2 and coder 3 agreed,
while coder 1 disagreed in 13.7% of the press releases; and all three coders disagreed
in only 1.6% of the press releases. We use this agreement rate as input to obtain
bounds on the proportion in each category, following Equation 6.1.

7 Propogating Uncertainty from Coder Disagree-

ment to Other Parameter Estimates

The proportion of documents that lie in a set of categories is often an intermediate
outcome of interest. The true quantity of interest is often the effect of some inter-
vention on the prevalence of that document or how the prevalence of some category
of interest affects some other outcome of interest. In this section we describe a
straightforward method for incorporating our uncertainty as a result of our coders’
disagreement into the next stage of an analysis. For simplicity we will focus on
a linear regression with a regression coefficient as the quantity of interest, but our
method extends to other parametric models and more elaborate quantities of interest
in a straightforward way. Proposition 7 in the Appendix shows this straightforward
generalization.

Suppose that our team of coders classifies documents from S sources with the
true proportion in category k from source s given by π̄k

p. A source might be a
politician, a survey respondent, a country’s leaders, a year a document was written,
or any other covariate stratum. Rather than observe a K component vector ȳc for
each coder c, we now obtain a K × S matrix of proportions for each coder, Ȳ

c
. We

denote the sth row of this matrix for the cth coder as ȳcs. This row provides the
proportion of observations in each category for a particular source of interest.

We will suppose that our interest is in understanding the relationship between a
vector of covariates for each source Xs—which we collect into X—and its relation-
ship with the prevalence of category k across the S sources. We will suppose the

27



following data generating process:

π̄k
s = βXs + νs

where νp is independent and identically distributed errors, with E[νs|Xs] = 0. Our
quantity of interest is β or the conditional relationship between covariates prevalence
of category k across sources. If we observe π̄k

s for each source s then the usual
regression estimator will be an unbiased and consistent estimator of β.

As we have argued throughout this paper, it is unlikely that our coders have
performed without error. The consequences of coder error for our regression can be
substantial. If our coders code with error, then we can write the observed vector
of proportions for category k ȳk as ȳk = πk + δk, where δk is the vector of average
bias across coders4 from coding for each source. Unless δsk = 0 for each source s the
regression estimator will no longer be consistent or unbiased because:(

X
′
X
)−1

X
′
ȳ =

(
X
′
X
)−1

X
′
π̄ +

(
X
′
X
)−1

X
′
δ

= β +
(
X
′
X
)−1

X
′
δ (7.1)

The second term remains so long as our coders code with error. While the regression
will be biased and inconsistent, we can develop an interval estimator that will contain
the true value of the regression coefficient of interest. To do, we first have to make
an additional assumption about the errors our coders make.

When focused on the proportion of documents in each category, it is true by
construction that there is one matrix that relates our coders’ decisions to the true
proportions. When we examine many sources, however, it is possible that coders
make different sorts of errors from different sources. We will denote the errors that
coder c makes on documents from source s as Ec

s. The specific errors that coder c
makes on source s might be the result of coders’ biases toward the source—such as
liberal college students coding documents from Republicans—or the result of some
sources using more ambiguous language—which might occur with language from
historical sources.

In many instances, however, coders are likely to make the same errors across
sources. This might be particularly likely if coders are randomly assigned to docu-
ments that are from a relatively similar set of sources—say official documents from
members of Congress—and unnecessary information is removed to limit the possi-
bility that coders’ biases will affect their decisions.

To develop our interval estimator for the coders’ proportions, we will make the
additional assumption that our coders make the same errors across sources. Specif-
ically we will assume that Ec

s = Ec for all sources s.

4This use of the term bias is different than what can be found sometimes in the literature on
handcoding. Di Eugenio and Glass (2004) for instance use this term to indicate the degree to which
the coders disagree. Another example from Byrt, Bishop and Carlin (1993): If Observers A and
B differ in their assessment of the frequency of occurrence of a condition in a study group, we say
that there is a bias between the observers. ( page 424).
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Assumption 6. Source Evaluation Matrix Stability Assumption For all
sources s, we assume that Ec

s = Ec for all coders c.

In other words, our coders can make their own specific errors, based on their
confusion about the coding rules or their attention to the documents, but across
sources, s, the coders make the same errors—they aren’t modifying their errors ac-
cording to the source of the document they are coding. This assumption, in addition
to likely being true, will substantially simplify the development of an interval esti-
mator for quantities of interest. Under this assumption, then, implies that for the
true evaluation matrix Ec,

(
E−1

)c
ȳcs = π̄s for all sources s.

To construct the interval estimator, suppose our quantity of interest is the tth
coefficient βt. We will assume again that our two coders have the maximum joint
validity given the level of agreement. We will further restrict the set of evaluation
matrices to be just those that, when inverted and applied to the estimated pro-

portions (Ec)−1 ȳc the result lies in the simplex and where
(
E1
)−1

ȳ1 =
(
E2
)−1

ȳ2.
Define E as the set of pair matrices that satisfy these conditions. Then we can define
an interval estimator for βint

t as,

βint
t =

[
min

(E1)∈E

(
X
′
X
)−1

X
′
((
E1
)−1

ȳ1
)
|t, max

(E1)∈E

(
X
′
X
)−1

X
′
((
E1
)−1

ȳ1
)
|t
]

Where, again |t selects the tth element from the vector.
Proposition 6 shows that, βt will be contained in βint

t .

Proposition 6. Suppose that Assumptions 1, 2, and 6 hold for all categories and
all coders. Suppose that using the true proportions π̄ and covariates X yields the
regression coefficient is βt. Then βt ∈ βint

t .

Proof. If coders have maximum average validity, then the true evaluation matrices

(E1,E2) ∈ E. This implies that
(
X
′
X
)−1

X
′ (
E1
)−1

ȳ1 = β and
(
X
′
X
)−1

X
′ (
E2
)−1

ȳ2 =

β. Therefore βt ∈ βint
t

In Appendix C we show that our interval estimator generalizes for any estimator
that would be consistent if the true proportions were used as either a dependent or
independent variables.

7.1 Analyzing the Taunting Rate Over Time

Grimmer, King, and Superti (2015) (GKS) analyze the rate US Senators engage in
taunting: explicit, public, and negative attacks on the other party or its members.
To measure the rate of taunting GKS engages in a massive hand coding effort,
employing a team of coders to label thousands of Senate speeches. GKS ensured
that 10% of all the speeches were double coded, to measure the agreement of the
coders. In this section we use a subset of the hand-coded data to examine how the
rate of taunting has varied over time and to demonstrate the need to adjust for coder
disagreement.

29



To apply the algorithm from the previous section, we aggregate their more gran-
ular coding into three categories: taunting, policy discussion, and other types of
Senate speech. We then focused on the proportion in each category from the two
most prolific coders in the data set. This yielded 379 double coded Senate speeches
and the two coders had an overall agreement rate across the three categories of 0.83.
Altogether the two coders classified and 11,136 total speeches coded.5 Using the
complete set of codes we measured the proportion of speeches from each senator in
each of three categories for the two coders.

Using the agreement rate between the coders and the measures of the proportion
in each category, we used the procedure in the previous section to measure the
average taunting rate from the 101st to the 109th Congress. The thick-black line in
Figure 5 shows the intervals on the average taunting rate in each Congress from our
bounding procedure, while the dashed line demonstrate the average taunting rate if
we fail to propogate coder uncertainty.

Figure 5: Taunting Rates in the US Senate, Across Congresses
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Figure 5 demonstrates that failing to include coder error can lead to a serious
underestimation of the taunting rate in the Congress. In the worst cases, the un-
adjusted taunting rate is more than a full percentage point lower in the minimum
of the interval from the bounding procedure. Overall, the unadjusted taunting rate
underestimates the taunting rate about 0.5 percentage points—or 9 percent under-
estimate.

Substantively, Figure 5 shows that there has not been a secular increase in taunt-
ing in the Senate. Rather, taunting appears highest immediately after the Republi-
can revolution, but subsided somewhat during the Bush administration.

5The total number of double-coded speeches is substantially lower than 10% because there were
many coders included in the data set and here we focus on only one pair of coders.
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8 Conclusion

A Summary of Notation

• Define meanj(aj) =
∑J

j=1 aj/J where J = |{j : ∀j}|.

• indices:

d (d = 1, . . . , D) document

s (s = 1, . . . , S) source (of documents)

k (k = 1, . . . , K) category

c (c = 1, . . . , C) coder (always as superscript)

• truth:

πd ∈ {1, . . . , K} true category for document d (always as subscript)

π̄k = meand[I(πd = k)] true proportion of documents in category k, with
vector π̄ = {π̄k : k = 1, . . . , K}

• measures:

ycd ∈ {1, . . . , K} coder c’s classification of document d

ȳck = meand[I(ycd = k)], proportion of documents classified into category
k by coder c, the average over all coders ȳk = meanc(ȳ

c
k), and vector

ȳ = {ȳk : k = 1, . . . , K}

• Validity and Reliability:

Evaluation Proportion: εcjk are misclassification proportions, the pro-
portion of times coder c classifies a document into category j among
those whose true category is k, with matrix Ec = {εcjk}, the diagonals
of which, εcjj, are the validities

Confusion Matrix element: m12
jk = meand[I(y1

d = j, y2
d = k)], with

diagonal elements being the reliabilities (or agreement propor-
tions), a12 =

∑K
k=1m

12
kk

• Concepts

Prior, Standard Assumptions: (a) above some (mysterious) thresh-
old of reliability, validity is not effected (i.e., the estimator is not
biased); (b) at least one coder is always right

Constant Category Validity Assumption: εckk = εc for all k

Wisdom of the Coders: Technically, this is a “Maximum Average
Coder Validity” assumption, or ε̇12 = 1+a12

2
. Equivalently, as we show,

this means if a plurality of coders of document d agree, they vote for
the truth; if there is a tie, then at least one side votes with the truth.
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Coding Generation Process: ȳck =
∑K

k=1 ε
c
jkπk, or in matrix form:

ȳc = Ecπ

Coder Trust Assumption: ε1 = 1+a12

2
+ λ1−a12

2
, ε2 = 1 + a12 − ε1 for

λ ∈ [−1, 1]

B Algorithm To Obtain Identification Region

To obtain the intervals using coding decisions and our assumptions, we use a brute
force approach to optimization. Specifically, suppose that we observe decisions from
coder 1 y1 and coding decisions from coder 2 y2, with agreement rate a12. From
Proposition 1 that ε1 + ε2 = 1 + a12.

Using this information we perform a grid search over the agreement values and
the evaluation matrices, while encoding constraints. Our algorithm first searches
over the possible accuracy levels, given agreement. For each accuracy level we then
perform a grid search over the evaluation matrices consistent with that level of
accuracy. By iterating over combinations of accuracy and evaluation matrices we
are able to characterize the maximum and minimum possible values.

More specifically, we use the following procedure. Suppose we have a K category
measure.

- For each ε1 and ε2 such that ε1 + ε2 = 1 + a12:

- For each column k and each zk ∈ ∆K−1:

- Create matrix E2 such that:
ε2 (1− ε2)z12 . . . (1− ε2)z1K

(1− ε2)z21 ε2 . . . (1− ε2)z2K
...

...
. . .

...
(1− ε2)zK1 (1− ε2)zK2 . . . ε2

 (B.1)

- For each column k and each xk ∈ ∆K−2 create matrix E1 such
that

ε1 (1− ε1 − x̃2)x12 . . . (1− ε1 − x̃K)x1K

x̃1 ε1 . . . x̃K
(1− ε1 − x̃1)x31) x̃2 . . . (1− ε1 − x̃K)x3K)

...
...

. . .
...

(1− ε1 − x̃1)xK1 (1− ε1)xK2 . . . ε1


(B.2)

where each x̃k are unknown values, leaving us with K unknown
values, which we collect into x̃

- Solve for x̃k such that

(E1)−1ȳ1 − (E2)−1ȳ2 = 0 (B.3)

using a Newton-Raphson algorithm. This ensures that the pro-
portions are equal.
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- If there is a solution use it to calculate E1 and then if (E1)−1ȳ1 ∈
∆K−1 then update the following for each k

mink = min(mink, [(E
1)−1ȳ1]k)

maxk = max(maxk, [(E
1)−1ȳ1]k)

- For each k return mink and maxk

Modifying the algorithm for the cases described above is straightforward. To
perform the sensitivity analysis we alter the range of validity that we search over.
When one coder is trusted more, we restrict the set of matrices that we search over.
When we have multiple coders we restrict the range of joint validity that we search
over.

The algorithm becomes increasingly complex as the number of categories in-
crease. But for three and four categories the model is easily fit and extended for all
of our cases. In many examples one or two categories are of interest and therefore
more complex schemes could be reduced to a 2-3 category scheme.

C A General Approach to Using Proportions as

Dependent and Independent Variables

In Section 7 we demonstrated that our approach could be applied to a case where
a parameter from a linear regression is the quantity of interest. In this section we
provide a straightforward extension of Proposition 6 to any consistent estimator
where the estimated proportions may be the dependent or independent variable.

For this general case, suppose that the set of potential covariate values for the
sources is X . Suppose we have an estimator g : ∆K−1 × X → <, g(π,X) for
some quantity of interest φ. Note that we are being intentionally ambiguous about
whether π is the independent or dependent variable. We will suppose that g(π,X)
is a consistent estimator of φ, so that g(π,aX) →plim φ. As in Section 7, we also
restrict attention to only those evaluation matrices that, when inverted and applied
to the hand coded estimate, returns estimates in the simplex and where the inverted
evaluation matrices, applied to the coders’ estimates, provide the value. As before,
define this set of pairs of matrices as E.

Then, we can define an interval estimator for the quantity of interest φint as,

φint =

[
min

(E1,E2)∈E
g(
(
E1
)−1

ȳ1,X), max
(E1,E2)∈E

g(
(
E1
)−1

ȳ1,X)

]
(C.1)

Proposition 7 shows that Equation C.1 will contain the true value of φ.

Proposition 7. Suppose that g(π,X) is a consistent estimator for φ, that coder 1
and coder 2 have maximum joint validity, that the coders’ errors are source indepen-
dent, and that the coders have constant validity across categories. Then φ ∈ φint.

Proof. The argument parallels the proof of Proposition 7. First note that the true
evaluation matrices E1,E2 ∈ E by Assumptions 1, 2, and 3. This implies that
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(
E1
)−1

ȳc =
(
E2
)−1

ȳc = π and thus g(
(
E1
)−1

ȳc,X) = φ and g(
(
E2
)−1

ȳ2,X) =
φ. Therefore φ ∈ φint
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